36 resultados para Guabiroba - Semente
Resumo:
In this paper a synthesis parameters study was conducted in order to optimize the obteinment of MCM-22 (MWW structure) and increase its accessibility, getting higher external surface and generating mesopores. Syntheses with Si / Al = 15 and Si / Al = 50 ratios were performed under static conditions at different temperatures and with seeds induction, which resulted in MCM-22 pure and crystalline (Si / Al ratio = 15) after 3 days and Si / Al = 50 after 11 days. The reduction of hexamethyleneimine content (HMI) was studied in the stirring synthesis and a HMI reduction of 47% was possible through the mother liquor reuse, in addition, a specific area of 481 m² / g has been obtained in the fourth synthesis day. Regarding the increase of accessibility of the MCM-22 zeolite skeins of MCM-22 plates with about 2 μm were obtained, through the use of dissolved silica, addition of seeds, increased temperature and synthesis time of 2 days. A significant value of specific area was found for this material, around 500 m² / g. Also with respect to the increase of MCM-22 accessibility, treatment with oxalic acid concentration of 0.5 mol / L and silanization of proto-zeolitic units resulted in the mesopores formation . Furthermore, silanization still favored reduction of 70 % in crystal size and a specific area of 566 m² / g.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
Serines proteinases inhibitors (PIs) are widely distributed in nature and are able to inhibit both in vitro and in vivo enzymatic activites. Seed PIs in than leguminous are classified in seven families, Bowman-Birk and Kunitz type families that most studied representing an important role in the first line of defense toward insects pests. Some Kunitz type inhibitors possess activities serine and cysteine for proteinases named bifunctional inhibitor, as ApTKI the inhibitor isolate from seed of Adenanthera pavonina. The A. pavonina inhibitor presenting the uncommon property and was used for interaction studies between proteinases serine (trypsin) and cysteine (papain). In order to determinate the in vitro interaction of ApTKI against enzymes inhibitor purification was carried cut by using chromatographic techniques and inhibition assays. The 3D model of the bifunctional inhibitor ApTKI was constructed SWISS-MODEL program by homology modeling using soybean trypsin inhibitor (STI, pdb:1ba7), as template which presented 40% of identity to A. pavonina inhibitor. Model quality was evaluated by PROCHECK program. Moreover in silico analyzes of formed complex between the enzymes and ApTKI was evaluated by HEX 4.5 program. In vitro results confirmed the inhibitory assays, where the inhibitor presented the ability to simultaneously inhibit trypsin and papain. The residues encountered in the inhibitor model of folder structural three-dimensional that make contact to enzymes target coud explain the specificity pattern against serine and cysteine proteinases
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased
Resumo:
The brazilian-plum (Spondias tuberosa, His) is a tropical fruit tree that has been consolidated in the market for agribusiness processing, due to its characteristic flavor of fruit. Accordingly, studies to optimize the propagation of plants are necessary for production of seedlings with agronomic and quality assurance measures. This study aimed at determining the efficient techniques for uniform seed germination, as brazilian-plum seed present mechanical dormancy, and establish optimal culture media for multiplication of shoots from the in vitro micropropagation. Firstly, in a greenhouse at the Universidade Federal do Rio Grande do Norte, was evaluated the influence of different methods of breaking dormancy in the emergence of seedlings of brazilian-plum and speed of germination (IVG) of seeds. After 60 days of cultivation, it was found that splay in the distal portion of the seed was the best treatment, with rates of 85.33% in germinability and 3.415 of IVG, compared with the treatment of seed-soaking in water for 12h + humus and the control group. Subsequently, new sources of seedling explants were obtained in studies of tissue culture. Laboratory of Plant Biotechnology that the university, was used stem apex, nodal segments and internodes in search of decontamination with various concentrations of calcium hypochlorite [Ca(OCl)2] and micropropagation, inoculating them in half WPM (1980) with various concentrations of 6-benzylaminopurine (BAP). We used 10 sample units with three replications for different concentrations of [Ca(OCl)2], BAP and explants type. After thirty days, which was observed for the control of contamination, during the establishment in vitro, concentrations of [Ca(OCl)2] between 0.5% and 2.0% were effective in combating exogenous contamination of the apex. In nodal segments and internodes, concentrations of [Ca(OCl)2] between 1.0% and 2.0% and 1.5% and 2.0% were respectively, sufficient to reduce the percentage of losses in these infestations explants. For micropropagation, the culture medium supplemented with 0.1 mg.L-1 BAP promotes better development of multiple shoots per explants from nodal segment. However, success does not get to shoot training in internodal segment