57 resultados para FSS. Frequency Selective Surface. Microwave Circuits. Genetic Algorithm.GA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of structures using frequency selective surfaces applied on patch antennas. The FDTD method is used to determine the time domain reflected fields. Applications of frequency selective surfaces and patch antennas cover a wide area of telecommunications, especially mobile communications, filters and WB antennas. scattering parameters are obteained from Fourier Transformer of transmited and reflected fields in time domain. The PML are used as absorbing boundary condition, allowing the determination of the fields with a small interference of reflections from discretized limit space. Rectangular patches are considered on dielectric layer and fed by microstrip line. Frequency selective surfaces with periodic and quasi-periodic structures are analyzed on both sides of antenna. A literature review of the use of frequency selective surfaces in patch antennas are also performed. Numerical results are also compared with measured results for return loss of analyzed structures. It is also presented suggestions of continuity to this work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal elements in planar microstrip structures. In particular, microstrip antennas and frequency selective surfaces (FSSs) had changed its conventional elements to fractal shapes. For microstrip antennas, was used as the radiating element of Minkowski fractal. The feeding method used was microstrip line. Some prototypes were built and the analysis revealed the possibility of miniaturization of structures, besides the multiband behavior, provided by the fractal element. In particular, the Minkowski fractal antenna level 3 was used to exploit the multiband feature, enabling simultaneous operation of two commercial tracks (Wi-Fi and WiMAX) regulated by ANATEL. After, we investigated the effect of switches that have been placed on the at the pre-fractal edges of radiating element. For the FSSs, the fractal used to elements of FSSs was Dürer s pentagon. Some prototypes were built and measured. The results showed a multiband behavior of the structure provided by fractal geometry. Then, a parametric analysis allowed the analysis of the variation of periodicity on the electromagnetic behavior of FSS, and its bandwidth and quality factor. For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft DesignerTM and a vector network analyzer, Agilent N5230A model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the fact that, the use of wireless communication systems has grown too fast, investigations concerning absorbers of electromagnetic waves has called closer attention of researchers. It is applicable from indoor systems to military applications. Paralleling with this growth, some extremely relevant investigations through Frequency Selective Surfaces (FSS) allows its filter property to be applicable in several systems, for example: reflector antennas, band-pass radomes, and absorbers, which are the main objective of this work. Therefore, the main goal of this work concerns to design micro-waves absorbers through FSS. Thus, the methodology consists basically in two steps: the first step concerns a theoretical and numerical analysis of the structures involved in the process of absorption, the second step, the analysis of the cascaded structures. In order to carry out the analysis, the Equivalent Circuit Method will be used. This method provides characteristics of transmission from the structure, for a plane wave incidence and it requires an extremely limited computing resource in relation if compared to full wave analyses method. Hence, it is useful to allow fast predictions of the development of the structures. Furthermore, a spreading matrix will be used in order to cascade the conductive FSS and the resistive FSS achieving absorption characteristics in the designed band. The experimental results used for the analysis are found in the literature due to the difficulty of building soon, given that it is not a simple construction technique. To conclude, a mathematical development through the Equivalent Circuit Method of a FSS modeling with cross-dipole geometry and a resistive FSS will be presented, as well as the cascading involving the two structures. The same setting is used with a square loop geometry. Besides it, the next steps will be discussed in the conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal and helical elements structures in planar microstrip. In particular, the frequency selective surfaces (FSSs) had changed its conventional elements to fractal and helical formats. The dielectric substrate used was fiberglass (FR-4) and has a thickness of 1.5 mm, a relative permittivity 4.4 and tangent loss equal to 0.02. For FSSs, was adopting the Dürer’s fractal geometry and helical geometry. To make the measurements, we used two antennas horns in direct line of sight, connected by coaxial cable to the vector network analyzer. Some prototypes were select for built and measured. From preliminary results, it was aimed to find practical applications for structures from the cascading between them. For FSSs with Dürer’s fractal elements was observed behavior provided by the multiband fractal geometry, while the bandwidth has become narrow as the level of iteration fractal increased, making it a more selective frequency with a higher quality factor. A parametric analysis allowed the analysis of the variation of the air layer between them. The cascading between fractal elements structure were considered, presented a tri-band behavior for certain values of the layer of air between them, and find applications in the licensed 2.5GHz band (2.3-2.7) and 3.5GHz band (3.3-3.8). For FSSs with helical elements, six structures were considered, namely H0, H1, H2, H3, H4 and H5. The electromagnetic behavior of them was analyzed separately and cascaded. From preliminary results obtained from the separate analysis of structures, including the cascade, the higher the bandwidth, in that the thickness of the air layer increases. In order to find practical applications for helical structures cascaded, the helical elements structure has been cascaded find applications in the X-band (8.0-12.0) and unlicensed band (5.25-5.85). For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft Designer and a vector network analyzer, Agilent N5230A model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet coding is an efficient technique to overcome the multipath fading effects, which are characterized by fluctuations in the intensity of the transmitted signals over wireless channels. Since the wavelet symbols are non-equiprobable, modulation schemes play a significant role in the overall performance of wavelet systems. Thus the development of an efficient design method is crucial to obtain modulation schemes suitable for wavelet systems, principally when these systems employ wavelet encoding matrixes of great dimensions. In this work, it is proposed a design methodology to obtain sub-optimum modulation schemes for wavelet systems over Rayleigh fading channels. In this context, novels signal constellations and quantization schemes are obtained via genetic algorithm and mathematical tools. Numerical results obtained from simulations show that the wavelet-coded systems derived here have very good performance characteristics over fading channels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet coding has emerged as an alternative coding technique to minimize the fading effects of wireless channels. This work evaluates the performance of wavelet coding, in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, main international standards reference for GSM, UMTS, and EDGE applications. The results show the wavelet coding s efficiency against the inter symbolic interference which characterizes these communication scenarios. This robustness of the presented technique enables its usage in different environments, bringing it one step closer to be applied in practical wireless communication systems