110 resultados para Desmonte de rochas
Resumo:
This work presents studies related to the use of microemulsions in the solubilization of heavy crude oil fractions responsible by the formation of deposits. The first stage of the work was addressed to the construction of phases diagrams, with the intention of determining the area within which the microemulsion is formed. The following systems were studied: UNITOL L 90 n-Butanol - Water - Kerosene (system 1); UNITOL L 90 - n-Butanol - Water - Xylene (system 2); UNITOL L 90 n-Butanol - Water - Kerosene/Xylene 10% (system 3); UNITOL L 90 - Sec-Butanol - Water - Xylene (system 4). In parallel experiments of physical adsorption were carried out by the static method, with the intention of simulating natural conditions of reservoirs. Crude oil of the Fazenda Belém field (Rio Grande do Norte), was used as solute, xylene as solvent and the Assu sandstone (Rio Grande do Norte, Brazil) and Botucatu sandstone (Paraná, Brazil) as rock reservoirs. The curves of adsorption presented the S format type, in agreement with the classification proposed by Giles, Smith and Huitson (1974). The solubilization process was accomplished in the batch method, by varying the time of agitation, the microemulsions and the solid/solution ratio. The experiments showed that the microemulsions presented high efficiency in the solubilization of the crude oil adsorbed on the sandstones. System 2 presented an efficiency of 99% for the Assu sandstone and 97% for the Botucatu sandstone
Resumo:
The objective of this study was to evaluate the displacement of petroleum/diesel solutions, at different concentrations, observing the effect of ultrasonic vibrations in fluids present in porous media to obtain an increase in oil production. The bubbles produced by ultrasound implode asymmetrically in the rock, generating liquid jets with high speed, displacing the oil present in porous media. The oil/diesel solutions were prepared with concentrations ranging from 20 g/L to 720 g/L in oil in relation to diesel and its viscosities were obtained in a Brookfield Rheometer RS2000, with temperature ranging from 25 to 55 °C. After, calculations were performed to obtain the activation energy data for oil/diesel solutions. For oil recovery experiments, cylindrical samples of porous rock (core samples), with resin around the perimeter and its two circular bases free to allow the passage of fluids, were first saturated with 2% KCl solution and after with oil solutions. The results of oil extraction were satisfactory for all studied solutions, being obtained up to 68% partial displacement with saline solution injection. The ultrasound system was used after saline injection, increasing oil displacement, with oil extractions ranging from 63% to 79%. During the experiments, it was observed the warming of core samples, helping to reduce the viscosity of more concentrated systems, and consequently enhancing the percentage of advanced recovery for all studied solutions
Resumo:
All around the world, naturally occurring hydrocarbon deposits, consisting of oil and gas contained within rocks called reservoir rocks , generally sandstone or carbonate exists. These deposits are in varying conditions of pressure and depth from a few hundred to several thousand meters. In general, shallow reservoirs have greater tendency to fracture, since they have low fracture gradient, ie fractures are formed even with relatively low hydrostatic columns of fluid. These low fracture gradient areas are particularly common in onshore areas, like the Rio Grande do Norte basin. During a well drilling, one of the most favorable phases for the occurrence of fractures is during cementing, since the cement slurry used can have greater densities than the maximum allowed by the rock structure. Furthermore, in areas which are already naturally fractured, the use of regular cement slurries causes fluid loss into the formation, which may give rise to failures cementations and formation damages. Commercially, there are alternatives to the development of lightweight cement slurries, but these fail either because of their enormous cost, or because the cement properties were not good enough for most general applications, being restricted to each transaction for which the cement paste was made, or both reasons. In this work a statistical design was made to determine the influence of three variables, defined as the calcium chloride concentration, vermiculite concentration and nanosilica concentration in the various properties of the cement. The use of vermiculite, a low density ore present in large amounts in northeastern Brazil, as extensor for cementing slurries, enabled the production of stable cements, with high water/cement ratio, excellent rheological properties and low densities, which were set at 12.5 lb / gal, despite the fact that lower densities could be achieved. It is also seen that the calcium chloride is very useful as gelling and thickening agent, and their use in combination with nanosilica has a great effect on gel strength of the cement. Hydrothermal Stability studies showed that the pastes were stable in these conditions, and mechanical resistance tests showed values of the order of up to 10 MPa
Resumo:
Petroleum exists in the nature in certain underground formations where it is adsorbed into the rocks pores. For the conventional recovery methods usually only 30% of the oil is extracted and this can be credited, basically, to three aspects: high viscosity of the oil, geology of the formation and high interfacial tensions between the reservoir s fluids. The enhanced recovery methods use the injection of a fluid or fluids mixture in a reservoir to act in points where the conventional process didn't reach the recovery rates. Microemulsion flooding, considered an enhanced method, has the purpose to desorb the oil from the rock formation and to attain an efficient displacement of the oil emulsion. With this in mind, this work was accomplished with two main objectives: the study of the parameters effect that influence a microemulsified system (surfactant and cosurfactant types, C/S rate and salinity) and the evaluation of displacement efficiency with the microemulsions that showed stability in the rich aqueous area. For the analyzed parameters it was chose the microemulsions composition used in the recovery stage: 25% water, 5% kerosene, 46.7% of butanol as cosurfactant and 23.3% of BC or SCO cosurfactant. The core plugs of Assu and Botucatu sandstones were appraised in porosity and permeability tests and then submitted to the steps of saturation with seawater and oil, conventional recovery with water and enhanced recovery with the selected microemulsions. The Botucatu sandstone presented better recovery parameters, and the microemulsion composed with BS surfactant had larger recovery efficiency (26.88%)
Resumo:
The accelerated pressure of use and occupation of Rio Grande do Norte coastline in the last two decades presented the tourism as its main vector, having as a consequence a strong, articulated and growing real estate speculation of this area. In the Natal County there is a Zona Especial de Interesse Turistico II (Special Zone of Tourism Interest II) (ZET-II), consisted of urban beaches with approximately 8.5 km that is an important seashore of the city. The purpose of this research was identification, characterization and assessment of the process of use and occupation of dunes fields emphasizing the role of ZET-II, whereas the specific goals was the analysis of weather, geology and geomorphology, characterization of use and occupation of soil, and elaboration of an environmental diagnosis with identification and description of its mains consequences. The result of this work was the delineation of geologic-geomorphological map of the area with identification of principals units, determining its use and occupation, the measurement of the area already occupied by equipments, besides the description of the environmental impacts on dune fields: devastation, coastline erosion, ocean pollution by sewer and pluvial waters, contamination of groundwater, distribution inadequate of solid residues, landscape degradation, and occupation of seashore through the privatization of public areas. Concluding that the degrading changes occurred in this areas are resulting from the nature of use and urban seashore regulations, which have been diminishing the natural aspect, altering the landscape definitely, compromising the quality of hydro resources and altering its use, privatizing the areas between tides, complicating the population access and obstructing the scenery visualization of dunes and ocean. There is an urgent necessity of improvement of public politics in order to improve the strategies and organization of use and occupation of space urban-coastline
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The studied region, named Forquilha and localized in northwestern Central Ceará domain (northern portion of Borborema Province), presents a lithostratigraphic framework constituted by paleoproterozoic metaplutonics, metasedimentary sequences and neoproterozoic granitoids. The metasedimentary rocks of Ceará group occupy most part of the area. This group is subdivided in two distinct units: Canindé and Independência. Canindé unit is represented basically by biotite paragneisses and muscovite paragneisses, with minor metabasic rocks (amphibolite lens). Independência sequence is composed by garnetiferous paragneisses, sillimanite-garnet-quartz-muscovite schists and quartz-muscovite schists, pure or muscovite quartzites and rare marbles. At least three ductile deformation events were recognized in both units of Ceará group, named D1, D2 and D3. The former one is interpreted as related to a low angle tangential tectonics which mass transport is southward. D2 event is marked by the development of close/isoclinal folds with a N-S oriented axis. Refolding patterns generated by F1 and F2 superposition are found in several places. The latest event (D3) corresponds to a transcurrent tectonics, which led to development of mega-folds and several shear zones, under a transpressional regime. The mapped shear zones are Humberto Monte (ZCHM), Poço Cercado (ZCPC) and Forquilha (ZCF). Digital image processing of enhanced Landsat 7-ETM+ satellite images, combined with field data, demonstrate that these penetrative structures are associated with positive and negative geomorphologic patterns, distributed in linear and curvilinear arrangements with tonal banding, corresponding to the ductile fabric and to crests. Diverse color composites were tested and RGB-531 and RGB-752 provided the best results for lineament analysis of the most prominent shear zones. Spatial filtering techniques (3x3 and 5x5 filters) were also used and the application of Prewitt filters generated the best products. The integrated analysis of morphological and textural aspects from filtered images, variation of tonalities related to the distribution of geologic units in color composites and the superposition over a digital elevation model, contributed to a characterization of the structural framework of the study area. Kinematic compatibility of ZCHM, ZCPC, ZCF shear zones, as well as Sobral-Pedro II (ZCSPII) shear zone, situated to the west of the study area, was one of the goal of this work. Two of these shear zones (ZCHM, ZCPC) display sinistral movements, while the others (ZCSPII, ZCF) exhibit dextral kinematics. 40Ar/39Ar ages obtained in this thesis for ZCSPII and ZCPC, associated with other 40Ar/39Ar data of adjacent areas, indicate that all these shear zones are related to Brasiliano orogeny. The trend of the structures, the opposite shear senses and the similar metamorphic conditions are fitted in a model based on the development of conjugate shear zones in an unconfined transpression area. A WNW-ESE bulk shortening direction is infered. The geometry and kinematic of the studied structures suggest that shortening was largely accommodated by lateral extrusion, with only minor amounts of vertical stretch
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
Northeastern Brazil is mainly formed by crystalline terrains (around 60% in area). Moreover, this region presents a semi-arid climate so that it is periodically subject to drought seasons. Furthermore, ground water quality extracted fromwells usually presents poor quality because of their high salinity contents. Nevertheless, ground water is still a very important source of water for human and animal consumption in this region. Well sitting in hard rocks terrains in Northeastern Brazil offers a mean success index of aboul 60%, given that a successful siting is defined by a well producing at least 0.5 m³/h. This low index reveals lack of knowledga about the true conditions of storage and percolation of ground water in crystalline rocks. Two models for structures storing and producing ground water in crystalline rocks in Northeastem Brazil have been proposed in the literature. The first model,tradnionally used for well sitting since the sixties are controlled by faults or fractures zones. This model is commonly referred, in Brazilian hydrogeological literature, as the "creek-crack" model (riacho-fenda in Portuguese). Sites appearing to present dense drainage network are preferred for water well siting - particularly at points where the drainages cross-cul each other. Field follow up work is usually based only on geological criteria. The second model is the "eluvio-alluvial through" (calha eluvio-aluvionar in Portuguese); it is also described in the literature but it is not yet incorporated in well sitting practice. This model is based on the hypothesis that reclilinear drainages can also be controlled by the folietion of the rock. Eventually, depending upon the degree of weathering, a through-shaped structure filled with sediments (alluvium and regolith) can be developed which can store and water can be produced from. Using severalfield case studies, this Thesis presents a thorough analysis ofthe two above cited models and proposes a new model. The analysis is based on an integrated methodological approach using geophysics and structural geology. Both land (Resitiviy and Ground Penetrating Radar- GPR) and aerogeophysical (magnetics and frequency domain eletromagnetics) surveys were used. Slructural analysis emphasized neolectonic aspects; in general, itwas found that fractures in the E-W direction are relatively open, as compared to fracturas inthe N-S direction, probably because E-W fractures were opened by the neotectonic stress regime in Northeastern Brazil, which is controlled by E-W compression and N-S extension. The riacho-fenda model is valid where drainages are controlled by fractures. The degree of fracturing and associated weathering dictale the hydrogeological potential of the structure. Field work in structural analogues reveals that subvertical fractures show consistent directions both in outcrop and aerophotograph scales. Geophysical surveys reveal subvertical conductive anomalies associated to the fracture network controlling the drainage; one of the borders of the conductive anomaly usually coincide wih the drainage. An aspect of particular importance to the validation of fracture control are the possible presence of relalively deep conductive anomalies wihoul continuation or propagalion to the surface. The conductive nature of lhe anomaly is due to the presence of wealhered rock and sedirnenls (alluvium and/or regolilh) storing ground waler which occur associated to the fracture network. Magnetic surveys are not very sensisnive to these structures.lf soil or covering sedirnents are resislive (> 100 Ohm.m), GPR can ba used to image precisely lhe fracture network. A major limialion of riacho-fenda model, revealed by GPR images, is associated to the fact thal subhorizontal fractures do play a very important role in connecting the fracture network, besides connect shallow recharge zones to relalively deep subvertical frecture zones. Iffractures play just a secondary control on the drainage, however, r/acho-fenda model may have a very limiled validny; in these cases, large portions oflhe drainage do nol coincide wilh frectures and mosl oflhewells localed in lhe drainage surrounding would resull dry. Usually, a secondary conlrol on lhe drainage by Ihefraclure networkcan be revealed only wilh detailed geophysical survey. The calha elClv1o-aluvlonarmodel is valid where drainages are conlrolled by folialion. The degree 01 wealhering 01 lhe lolialion planes dictales lhe hydrogeological polenlial 01 lhe slruclure. Outcrop analysis reveals Ihal lolialion and drainage direclions are parallel and Ihal no Iraclures, orfraclures wilh diflerent directions 01 lhe drainage direclion occur. Geophysical surveys reveal conduclive anomalies in a slab lorm associaled 10 lhe Ihrough 01 lhe wealhered rock and sedimenls (alluvium and/or regolith). Magnelic surveys can ofler a very good conlrol on lolialion direclion. An importanl aspect 10 validale lolialion conlrol are lhe presence 01 conductive anomalies showing shallow and deep portions area which are linked. Illhere is an exlensive soil cover, r/acho-fenda and calha eIClv1o-aluv/onar conlrols can be easily misinlerpreled in lhe absence 01 geophysical conlrol. Certainly, Ihis lacl could explain at leasl a part of lhe failure index in well sitting. The model wealhering sack (bolsllo de Intempertsmo in Portuguese) is proposed to explain cases where a very inlensive wealhering occur over lhe crystalline rock so Ihal a secondary inlerslilial porosity is crealed. The waler is Ihen stored in lhe porous of lhe regolilh in a similar mannerlo sedimentary rocks. A possible example ofthis model was delecled by using land geophysical survey where a relalivelyvery deep isolaled conduclive anomaly, in a slab form, was delected. Iflhis structure does store ground waler, certainly Ihere must be a link 01 lhe deep slructure wilh lhe surface in orderlo provide walerfeeding. This model mighl explain anomalous waler yields as greal as 50 m³/h Ihalsomelimescan occur in crystalline rocks in Northeaslern Brazil
Resumo:
This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record
Resumo:
This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
The study of Brazilian sedimentary basins concentrates on their rift phase, whereas the Post-rift phase has been considered a tectonic quiescent period. The post-rift sequence of the Potiguar Basin, in the far northeastern Brazil, was once considered little deformed, however several studies have shown how that it was affected by major fault systems. The purpose of this thesis is to characterize the post-rift tectonic. The specific objectives are: to characterize the Neogene and Quaternary sedimentary units that outcrop of the Potiguar Basin; to show how the NW-SEtrending Afonso Bezerra Faults System deformed outcrop rocks in the Basin; to describe soft-sediment deformation in gravels of the Quaternary Alluvial Deposits from Açu River. Facies analyses, grain-size studies, luminescence dating, remote sensing, structural mapping, shallow geophysics (georadar), paleostress and petrography were carried out. The structural mapping and the georadar sections indicated that the Carnaubais and Afonso Bezerra fault systems formed fractures, silicified and non-silicified faults or deformation bands, affecting mainly the Açu, Jandaíra and Barreiras formations. The petrographic data indicate that the strong silicification resulted in a sealant character of the faults. Paleostress analysis indicates that two stress fields affected the Basin: the first presented N-S-trending compression, occurred from the Neocretaceous to the Miocene; the second stress field presents E-W-trending compression, acts from the Miocene to the present. It was verified once the Afonso Bezerra System Faults was reactivated in periods post-Campanian and affects all post-rift lithostratigraphic units of Potiguar Basin, including Quaternary sedimentary covers. The study about soft-sediment deformation structures indicates that they are similar in morphology and size to modern examples of seismically-induced deformation strutures in coarse sediments. TL and OSL ages indicate that sediment deposition and associated soft-sediment deformation occurred at least six times from ~352 Ka to ~9 Ka. Finally these studies demonstrate how recent is tectonics in the Basin Potiguar
Resumo:
The aim of this work was to describe the methodological procedures that were mandatory to develop a 3D digital imaging of the external and internal geometry of the analogue outcrops from reservoirs and to build a Virtual Outcrop Model (VOM). The imaging process of the external geometry was acquired by using the Laser Scanner, the Geodesic GPS and the Total Station procedures. On the other hand, the imaging of the internal geometry was evaluated by GPR (Ground Penetrating Radar).The produced VOMs were adapted with much more detailed data with addition of the geological data and the gamma ray and permeability profiles. As a model for the use of the methodological procedures used on this work, the adapted VOM, two outcrops, located at the east part of the Parnaiba Basin, were selected. On the first one, rocks from the aeolian deposit of the Piaui Formation (Neo-carboniferous) and tidal flat deposits from the Pedra de Fogo Formation (Permian), which arises in a large outcrops located between Floriano and Teresina (Piauí), are present. The second area, located at the National Park of Sete Cidades, also at the Piauí, presents rocks from the Cabeças Formation deposited in fluvial-deltaic systems during the Late Devonian. From the data of the adapted VOMs it was possible to identify lines, surfaces and 3D geometry, and therefore, quantify the geometry of interest. Among the found parameterization values, a table containing the thickness and width, obtained in canal and lobes deposits at the outcrop Paredão and Biblioteca were the more relevant ones. In fact, this table can be used as an input for stochastic simulation of reservoirs. An example of the direct use of such table and their predicted radargrams was the identification of the bounding surface at the aeolian sites from the Piauí Formation. In spite of such radargrams supply only bi-dimensional data, the acquired lines followed of a mesh profile were used to add a third dimension to the imaging of the internal geometry. This phenomenon appears to be valid for all studied outcrops. As a conclusion, the tool here presented can became a new methodology in which the advantages of the digital imaging acquired from the Laser Scanner (precision, accuracy and speed of acquisition) were combined with the Total Station procedure (precision) using the classical digital photomosaic technique