67 resultados para Cargas aerodinâmicas
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developing the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. It s important to point out that, in spite of the loads being normally connected to the transformer s secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developping the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. Its important to point out that, in spite of the loads being normally connected to the transformers secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
The reconfiguration of a distribution network is a change in its topology, aiming to provide specific operation conditions of the network, by changing the status of its switches. It can be performed regardless of any system anomaly. The service restoration is a particular case of reconfiguration and should be performed whenever there is a network failure or whenever one or more sections of a feeder have been taken out of service for maintenance. In such cases, loads that are supplied through lines sections that are downstream of portions removed for maintenance may be supplied by the closing of switches to the others feeders. By classical methods of reconfiguration, several switches may be required beyond those used to perform the restoration service. This includes switching feeders in the same substation or for substations that do not have any direct connection to the faulted feeder. These operations can cause discomfort, losses and dissatisfaction among consumers, as well as a negative reputation for the energy company. The purpose of this thesis is to develop a heuristic for reconfiguration of a distribution network, upon the occurrence of a failure in this network, making the switching only for feeders directly involved in this specific failed segment, considering that the switching applied is related exclusively to the isolation of failed sections and bars, as well as to supply electricity to the islands generated by the condition, with significant reduction in the number of applications of load flows, due to the use of sensitivity parameters for determining voltages and currents estimated on bars and lines of the feeders directly involved with that failed segment. A comparison between this process and classical methods is performed for different test networks from the literature about networks reconfiguration
Resumo:
The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
With the objective to promote sustainable development, the fibres found in nature in abundance, which are biodegradable, of low cost in comparison to synthetic fibres are being used in the manufacture of composites. The mechanical behavior of the curauá and pineapple leaf fibre (PALF) composites in different proportions, 25% x 75% (P1), 50% x 50% (P2) e 75% x 25% (P3) were respectively studied, being initially treated with a 2% aqueous solution of sodium hydroxide. Mechanical analyses indicated that with respect to studies of traction, for the combination of P1 and P3, better results of 22.17 MPa and 16.98 MPa, were obtained respectively, which are higher than that of the combination P2. The results of the same pattern were obtained for analysis of bending resistance where P1 is 1.21% and P3 represents 0.96%. In the case of resistance to bending, best results were obtained for the combination P1 at 49.07 MPa. However, when Young's modulus values were calculated, the values were different to the pattern of the results of other tests, where the combination P2 with the value of 4.06 GPa is greater than the other combinations. This shows that the PALF had a greater influence in relation to curauá fibre. The analysis of the results generally shows that in combinations of two vegetable fibers of cellulosic origin, the fiber which shows higher percentage (75%) is the best option than to the composition of 50%/50%. In the meantime, according to the results obtained in this study, in the case where the application should withstand bending loads, the better composition would be 50%/50%
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
The great importance in selecting the profile of an aircraft wing concerns the fact that its relevance in the performance thereof; influencing this displacement costs (fuel consumption, flight level, for example), the conditions of flight safety (response in critical condition) of the plane. The aim of this study was to examine the aerodynamic parameters that affect some types of wing profile, based on wind tunnel testing, to determine the aerodynamic efficiency of each one of them. We compared three types of planforms, chosen from considerations about the characteristics of the aircraft model. One of them has a common setup, and very common in laboratory classes to be a sort of standard aerodynamic, it is a symmetrical profile. The second profile shows a conFiguration of the concave-convex type, the third is also a concave-convex profile, but with different implementation of the second, and finally, the fourth airfoil profile has a plano-convex. Thus, three different categories are covered in profile, showing the main points of relevance to their employment. To perform the experiment used a wind tunnel-type open circuit, where we analyzed the pressure distribution across the surface of each profile. Possession of the drag polar of each wing profile can be, from the theoretical basis of this work, the aerodynamic characteristics relate to the expected performance of the experimental aircraft, thus creating a selection model with guaranteed performance aerodynamics. It is believed that the philosophy used in this dissertation research validates the results, resulting in an experimental alternative for reliable implementation of aerodynamic testing in models of planforms
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
Fillers are often added in composites to enhance performance and/or to reduce cost. Fiberglass pipes must meet performance requirements and industrial sand is frequently added for the pipe to be cost competitive. The sand is added to increase pipe wall thickness, thus increase pipe stiffness. The main goal of the present work is to conduct an experimental investigation between pipes fabricated with and without de addition of sand, to be used in the petroleum industry. Pipes were built using E-glass fibers, polyester resin and siliceous sand. The fabrication process used hand lay up and filament winding and was divided in two different parts: the liner and the structural wall. All tested pipes had the same liner, but different structural wall composition, which is the layer where siliceous sand may be added or not. The comparative investigation was developed considering the results of longitudinal tensile tests, hoop tensile tests, hydrostatic pressure leak tests and parallel-plate loading stiffness tests. SEM was used to analyze if the sand caused any damage to the glass fibers, during the fabrication process, because of the fiber-sand contact. The procedure was also used to verify the composite conditions after the hydrostatic pressure leak test. The results proved that the addition of siliceous sand reduced the leak pressure in about 17 %. In the other hand, this loss in pressure was compensated by a stiffness increment of more than 380 %. MEV analyses show that it is possible to find damage on the fiber-sand contact, but on a very small amount. On most cases, the contact occurs without damage evidences. In summary, the addition of sand filler represented a 27.8 % of cost reduction, when compared to a pipe designed with glass fiber and resin only. This cost reduction combined to the good mechanical tests results make siliceous sand filler suitable for fiberglass pressure pipes
Resumo:
This work presents the incorporation of an industrial polymeric waste into a petroleum asphalt cement with penetration grade 50-60 (CAP 50-60). The main goal of this research is the development of a polymer-modified asphalt, with improvements in its physical properties, in order to obtain a more resistant material to the traffic loads. Furthermore, the use of this polymeric waste will result in economic and environmental benefits. The CAP 50-60 used in this research was kindly supplied by LUBNOR Lubrificantes e Derivados de Petróleo do Nordeste (produced in Fazenda Belém Aracati - Ceará) and the industrial polymeric waste was provided by a button manufacturer industry, located in Rio Grande do Norte state. This polymeric waste represents an environmental problem due to its difficulty in recycling and disposal, being necessary the payment by the industry to a landfill. The difficulty in its reuse is for being this material a termofixed polymer, as a result, the button chips resulting from the molding process cannot be employed for the same purpose. The first step in this research was the characterization of the polymeric waste, using Differential Scanning Calorimetry (DSC) Infrared spectroscopy (IR spectroscopy), and Thermogravimetric analysis (TGA). Based on the results, the material was classified as unsaturated polyester. After, laboratory experiments were accomplished seeking to incorporate the polymeric waste into the asphalt binder according to a 23 experimental factorial design, using as main factors: the polymer content (2%, 7% and 14%), the temperature of the mixture (140 and 180 oC) and the reaction time (20 and 60 minutes). The characterization of the polymer-modified asphalt was accomplished by traditional tests, such as: penetration, ring and ball softening point, viscosity, ductility and flash point temperature. The obtained results demonstrated that the addition of the polymeric waste into the asphalt binder modified some of its physical properties. However, this addition can be considered as a feasible alternative for the use of the polymeric waste, which is a serious environmental and technological problem.