37 resultados para CIRCADIAN OSCILLATORS
Resumo:
One of the main environmental cues for the adjustment of temporal organization of the animals is the light-dark cycle (LD), which undergoes changes in phase duration throughout the seasons. Photoperiod signaling by melatonin in mammals allows behavioral changes along the year, as in the activity-rest cycle, in mood states and in cognitive performance. The aim of this study was to investigate if common marmoset (Callithrix jacchus) exhibits behavioral changes under short and long photoperiods in a 24h cycle, assessing their individual behaviors, vocal repertoire, exploratory activity (EA), recognition memory (RM) and the circadian rhythm of locomotor activity (CRA). Eight adult marmosets were exposed to a light-dark cycle of 12:12; LD 08:16; LD 12:12 and LD 16:08, sequentially, for four weeks in each condition. Locomotor activity was recorded 24h/day by passive infrared motion detectors above the individual cages. A video camera system was programmed to record each animal, twice a week, on the first two light hours. From the videos, frequency of behaviors was registered as anxiety-like, grooming, alert, hanging position, staying in nest box and feeding using continuous focal animal sampling method. Simultaneously, the calls emitted in the experimental room were recorded by a single microphone centrally located and categorized as affiliative (whirr, chirp), contact (phee), long distance (loud shrill), agonistic (twitter) and alarm (tsik, seep, see). EA was assessed on the third hour after lights onset on the last week of each condition. In a first session, marmosets were exposed to one unfamiliar object during 15 min and 24h later, on the second session, a novel object was added to evaluate RM. Results showed that long days caused a decreased of amplitude and period variance of the CRA, but not short days. Short days decreased the total daily activity and active phase duration. On long days, active phase duration increased due to an advance of activity onset in relation to symmetric days. However, not all subjects started the activity earlier on long days. The activity offset was similar to symmetric days for the majority of marmosets. Results of EA showed that RM was not affected by short or long days, and that the marmosets exhibited a decreased in duration of EA on long days. Frequency and type of calls and frequency of anxiety-like behaviors, staying in nest box and grooming were lower on the first two light hours on long days. Considering the whole active phase of marmosets as we elucidate the results of vocalizations and behaviors, it is possible that these changes in the first two light hours are due to the shifting of temporal distribution of marmoset activities, since some animals did not advance the activity onset on long days. Consequently, the marmosets mean decreased because the sampling was not possible. In conclusion, marmosets synchronized the CRA to the tested photoperiods and as the phase angle varied a lot among marmosets it is suggested that they can use different strategies. Also, long days had an effect on activity-rest cycle and exploratory behaviors
Resumo:
Several studies have shown that there is a circadian modulation of explicit memory. This modulation can occur independently in each one of the mnemonic processes. The aim of this study was to evaluate the influence of time of training on short-term memory (STM) and long-term memory (LTM), using a recognition task. Moreover, a possible circadian modulation in retrieving was investigated when this process matched the acquisition hour (time stamp). The chronotype variable was also considered. Fifty-seven undergraduate students aging between 18 and 25 years (21,72 ± 2,14; 28 ♂) participated in this study. In the training phase (acquisition) the subjects heard a ten word list. Following this, they answered a recognition test to evaluate STM and one week later they answered a recognition test to evaluate LTM. In each chronotype, the subjects were divided in groups according to the training hour, part of them in the morning and the other in the afternoon. One week later some of the subjects in each group underwent LTM testing in the morning and others in the afternoon. When the subjects performances were analyzed together, independently of the chronotypes, a training hour effect was found in the LTM. The subjects trained in the afternoon had better performance. No time of day effect was found in the STM and in retrieving from the LTM. However, the morning types who were trained and tested in the same hour had a better performance in the LTM when compared to morning types trained and tested in different hours. This effect did not occur when the other chronotypes were analyzed. The circadian modulation seems to occur at least in two different ways. First, there is a circadian modulation in the acquisition/consolidation processes, with a better performance occuring in the afternoon. Secondly, there is a modulation in the retrieval mnemonic process, called time stamp phenomenon. This phenomenon, that occurred in the morning types, is showed for the first time in humans
Resumo:
The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.
Resumo:
The circadian timing system (CTS), in rodents, consists of interconnected neural structures such as the suprachiasmatic nucleus (SCN) of the hypothalamus, Intergeniculate Leaflet (IGL) of the thalamus, synchronous pathways and behavioral effectors. The SCN has been described as the major circadian pacemaker in several species of mammals, while the IGL appears to be involved in integration of photic and non-photic clues relaying them to SCN. The CTS allows an ordered internal temporal organization to the organism, providing the proper execution of physiological and behavioral mechanisms, which brings homeostasis. However, this stability is disrupted with aging process causing numerous pathological disorders, ranging from simple loss of physiological functions to decreases in cognitive performance. Therefore, is fundamental understanding the effects of senescence in this system. In this context, is proposed in this study to check if there are changes in IGL cytoarchitecture, neurochemical and retinal afferent markers with aging and their possible morpho-functional implications. To achieve this goal wistar rats were divided into 3 groups: young (3 months); Middle Age (13 months); Old (23 months). They were submitted to paraformaldhyde (4%) transcardiac perfusion to tissue fixation. Then, they had their brain removed and sectioned in 30 µm slices, which every sixth section were collected. This sections were processed by nissl method and immunostaining for GFAP, GAD, ENK, NPY and CTb in order to analyze the IGL features. It was observed a cell loss in middle age and old animals at Nissl, NPY and CTb stains. In addition, it was shown a increase in GFAP in middle aged animals compared to young and old ones. No differences were found in other neurochemichal stains. These data suggests IGL loss retinal afferents and neurons, in special the NPY-IR ones, likely having a compensatory gliogenesis. This supports the correlations between the CTS functional deficits and an anatomical deterioration of its components with the aging process.
Resumo:
Introduction: The circadian system has neural projections for the Autonomic Nervous System (ANS), directly interfering with sympathetic-vagal modulation of the cardiovascular system. Disturbances in the circadian system, such as phase changes in light-dark cycle (LD), has been related to the risk of development of cardiovascular diseases due to increased sympathetic tone and reduction o Heart Rate Variability (HRV - RR intervals). Purpose: Investigate the interaction between Circadian Timing System and cardiac autonomic control in rats. Materials and methods: We used 18 Wistar rats (♀, age = 139.9 ± 32.1 days, weight = 219.5 ± 16.2 g), divided into three distinct groups: Control (CG), phase delay of 6h (GDe) and phase advance of 6h (GAd). Three animals were excluded during data collection (CG/GDe/GAd - n=5). Telemeters were surgically implanted in each animal for continuous acquisition of electrocardiographic (ECG) signals (duration of 21 days in the CG and 28 days in GDe/ GAd). A LD cycle was established 12h: 12h, beginning of light at18:00h and dark at 06:00h. The animals remained in the same CG LD cycle throughout the experimental period, while, on the 14th day of registration, the GDe and GAd underwent a delay and an advance in 6h, respectively. Throughout the experimental period, the locomotor activity (LA), the mean heart rate (mHR) and variables related to iRR [mean RR (mRR), SDNN, RMSSD, LF, HF and LF/ HF ratio ] were recorded. All data were analyzed in blocks of 3 and 7 days, for the presence of circadian rhythm, values of Cosinor - mesor, amplitude and acrophase (paired t test), phase relationship, differences between light and dark (t test independent), averages every 30 minutes along each time series (two-way ANOVA with post hoc Bonferroni). The data block B1,M1 and M2 in CG served as benchmarks for comparisons between series of analysis of the GAT/GAV. Results: We observed circadian rhythmicity in the variables LA, mRR and mFC(p<0.01). mRR and mFC showed phase relationship with the LA in all three groups, being less stable in GAd. In the CG, no significant differences between blocks were found in any of the analyzes(p>0.05). Among the 7 day blocks, there was a significant reduction in mRR(p=0.04) and mFC(p=0.03) in GDe and significant reduction in HF mean(p=0.02) in GAd; and between 3 day blocks, a significant increase of LF/HF(p= 0.04) in the GDe; besides mRR(p=0.03), SDNN(p=0.04), RMSSD (p=0.04), LF (p=0.01) and HF(p=0.02) significant increase in the GAd. It was found that the differences between the means of the mRR, LA and mFC in light and dark phases were not significant after phase changes in some of the blocks/moments (GDe and GAd). No significant results were found when comparing rhythmic variables means every 30 minutes over the blocks, except for a significant decrease in mRR at the middle of the dark phase (B2) and the start of light phase (B3) - (p<0.01). Conclusion: phase advances and delays (6h) altered cardiac autonomic control in the experimental groups by temporarily HRV decrease. Phase advances apparently had greater negative interference in this process, in relation to the phase delays.
Resumo:
Studies reveal that in recent decades a decrease in sleep duration has occurred. Social commitments, such as work and school are often not aligned to the "biological time" of individuals. Added to this, there is a reduced force of zeitgeber caused by less exposure to daylight and larger exposure to evenings. This causes a chronic sleep debt that is offset in a free days. Indeed, a restriction and extent of sleep called "social Jet lag" occurs weekly. Sleep deprivation has been associated to obesity, cancer, and cardiovascular risk. It is suggested that the autonomic nervous system is a pathway that connects sleep problems to cardiovascular diseases. However, beyond the evidence demonstrated by studies using models of acute and controlled sleep deprivation, studies are needed to investigate the effects of chronic sleep deprivation as it occurs in the social jet lag. The aim of this study was to investigate the influence of social jet lag in circadian rest-activity markers and heart function in medical students. It is a cross-sectional, observational study conducted in the Laboratory of Neurobiology and Biological Rhythmicity (LNRB) at the Department of Physiology UFRN. Participated in the survey medical students enrolled in the 1st semester of their course at UFRN. Instruments for data collection: Munich Chronotype Questionnaire, Morningness Eveningness Questionnaire of Horne and Östberg, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Actimeter; Heart rate monitor. Analysed were descriptive variables of sleep, nonparametric (IV60, IS60, L5 and M10) and cardiac indexes of time domain, frequency (LF, HF LF / HF) and nonlinear (SD1, SD2, SD1 / SD2). Descriptive, comparative and correlative statistical analysis was performed with SPSS software version 20. 41 students participated in the study, 48.8% (20) females and 51.2% (21) males, 19.63 ± 2.07 years. The social jet lag had an average of 02: 39h ± 00:55h, 82.9% (34) with social jet lag ≥ 1h and there was a negative correlation with the Munich chronotype score indicating greater sleep deprivation in subjects prone to eveningness. Poor sleep quality was detected in 90.2% (37) (X2 = 26.56, p <0.001) and 56.1% (23) excessive daytime sleepiness (X2 = 0.61, p = 0.435). Significant differences were observed in the values of LFnu, HFnu and LF / HF between the groups of social jet lag <2h and ≥ 2h and correlation of the social jet lag with LFnu (rs = 0.354, p = 0.023), HFnu (rs = - 0.354 , p = 0.023) and LF / HF (r = 0.355, p = 0.023). There was also a negative association between IV60 and indexes in the time domain and non-linear. It is suggested that chronic sleep deprivation may be associated with increased sympathetic activation promoting greater cardiovascular risk.
Resumo:
In marmosets, it was observed that the synchrony among circadian activity profiles of animals that cohabite in family groups is stronger than those of the same sex and age of different families. Inside the group, it is stronger between the younger ones than between them and their parents. However, the mechanisms involved in the social synchrony are unknown. With the aim to investigate the synchronization mechanisms involved in the synchrony between the circadian activity profiles during cohabitation in pairs of marmosets, the motor activity was continuously registered by the use of actmeters on three dyads. The pairs were maintained in two different conditions of illumination: light-dark cycle LD 12:12 (LD cohabitation I – 21 days), and thereafter in LL (~350 lux). Under LL, the pairs were submitted to four experimental situations: 1. Cohabitation (LLJ I – 24 days), 2. Removal of one member of the pair to another room with similar conditions (LLS I – 20 days), 3. Reintroduction of the separated member in the cage of the first situation (LLJ II – 30 days) and 4. Removal of a member from each pair to another experimental room (LLS II – 7 days), to evaluate the mechanisms of synchronization. Ultimately, the members of each pair were reintroduced in the cage and were kept in LD cycle 12:12 (LDJ II – 11 days). The rhythms of pairs free-ran in LL, with identical periods between the members of each pair during the two stages of cohabitation. In the stages in which the animals were separated, only the rhythms of two females free-ran in the first stage and of three animals in the second one. In those conditions, the rhythms of animals of each pair showed different endogenous periods. Besides, during cohabitation in LD and LL, the members of each pair showed a stable phase relationship in the beginning of the active phase, while in the stages in which the animals were separated it was noticed a breaking in the stability in the phase relationships between the circadian activity profiles, with an increase in the difference in the phase angles between them. During cohabitation, at the transition between LD and LL, all animals showed free-running rhythms anticipating progressively the beginning and the end of the active phase in a phase similar to the previous condition, showing signs of entrainment to the previous LD. While in the posterior stages this was observed in only three animals between: LLT I and LLS I, and LLT II and LLS II, evidencing signs of entrainment to social cues between the members of each pair. On the other hand, one animal delayed progressively between LLT I and LLS I, three animals delayed between LLS I and LLT II, and three animals between LLT II and LLS II, perhaps by entrainment to the animals maintained outdoors in the colony. Similar process was observed in four animals between LLS II and LDT II, indicating entrainment to LD. In the transition between LLS I and LLT II, signs of masking was observed in the rhythm of a female in response to the male and in another pair in the rhythm of the male in regard to that of the female. The general and maximum correlations in the circadian activity profiles were stronger during cohabitation in LD and LL than in the absence of social contact in LL, evidencing the social effect. The cohabiting pairs had higher values of the maximum correlation in LD and LL than when the profiles were correlated to animals of different cages, with same or different sexes. Similar results were observed in the general correlation. Therefore, it is suggested that cohabitation induces a strong synchrony between circadian activity profiles in marmosets, which involves entrainment and masking. Nevertheless, additional studies are necessary to evaluate the effect of social cues on the synchronization of the circadian rhythm in pairs of marmosets in the absence of external social cues in order to confirm this hypothesis.