45 resultados para Boris Vian
Resumo:
Programs manipulate information. However, information is abstract in nature and needs to be represented, usually by data structures, making it possible to be manipulated. This work presents the AGraphs, a representation and exchange format of the data that uses typed directed graphs with a simulation of hyperedges and hierarchical graphs. Associated to the AGraphs format there is a manipulation library with a simple programming interface, tailored to the language being represented. The AGraphs format in ad-hoc manner was used as representation format in tools developed at UFRN, and, to make it more usable in other tools, an accurate description and the development of support tools was necessary. These accurate description and tools have been developed and are described in this work. This work compares the AGraphs format with other representation and exchange formats (e.g ATerms, GDL, GraphML, GraX, GXL and XML). The main objective this comparison is to capture important characteristics and where the AGraphs concepts can still evolve
Resumo:
A matemática intervalar é uma teoria matemática originada na década de 60 com o objetivo de responder questões de exatidão e eficiência que surgem na prática da computação científica e na resolução de problemas numéricos. As abordagens clássicas para teoria da computabilidade tratam com problemas discretos (por exemplo, sobre os números naturais, números inteiros, strings sobre um alfabeto finito, grafos, etc.). No entanto, campos da matemática pura e aplicada tratam com problemas envolvendo números reais e números complexos. Isto acontece, por exemplo, em análise numérica, sistemas dinâmicos, geometria computacional e teoria da otimização. Assim, uma abordagem computacional para problemas contínuos é desejável, ou ainda necessária, para tratar formalmente com computações analógicas e computações científicas em geral. Na literatura existem diferentes abordagens para a computabilidade nos números reais, mas, uma importante diferença entre estas abordagens está na maneira como é representado o número real. Existem basicamente duas linhas de estudo da computabilidade no contínuo. Na primeira delas uma aproximação da saída com precisão arbitrária é computada a partir de uma aproximação razoável da entrada [Bra95]. A outra linha de pesquisa para computabilidade real foi desenvolvida por Blum, Shub e Smale [BSS89]. Nesta aproximação, as chamadas máquinas BSS, um número real é visto como uma entidade acabada e as funções computáveis são geradas a partir de uma classe de funções básicas (numa maneira similar às funções parciais recursivas). Nesta dissertação estudaremos o modelo BSS, usado para se caracterizar uma teoria da computabilidade sobre os números reais e estenderemos este para se modelar a computabilidade no espaço dos intervalos reais. Assim, aqui veremos uma aproximação para computabilidade intervalar epistemologicamente diferente da estudada por Bedregal e Acióly [Bed96, BA97a, BA97b], na qual um intervalo real é visto como o limite de intervalos racionais, e a computabilidade de uma função intervalar real depende da computabilidade de uma função sobre os intervalos racionais
Resumo:
Este trabalho apresenta uma extensão do provador haRVey destinada à verificação de obrigações de prova originadas de acordo com o método B. O método B de desenvolvimento de software abrange as fases de especificação, projeto e implementação do ciclo de vida do software. No contexto da verificação, destacam-se as ferramentas de prova Prioni, Z/EVES e Atelier-B/Click n Prove. Elas descrevem formalismos com suporte à checagem satisfatibilidade de fórmulas da teoria axiomática dos conjuntos, ou seja, podem ser aplicadas ao método B. A checagem de SMT consiste na checagem de satisfatibilidade de fórmulas da lógica de primeira-ordem livre de quantificadores dada uma teoria decidível. A abordagem de checagem de SMT implementada pelo provador automático de teoremas haRVey é apresentada, adotando-se a teoria dos vetores que não permite expressar todas as construções necessárias às especificações baseadas em conjuntos. Assim, para estender a checagem de SMT para teorias dos conjuntos destacam-se as teorias dos conjuntos de Zermelo-Frankel (ZFC) e de von Neumann-Bernays-Gödel (NBG). Tendo em vista que a abordagem de checagem de SMT implementada no haRVey requer uma teoria finita e pode ser estendida para as teorias nãodecidíveis, a teoria NBG apresenta-se como uma opção adequada para a expansão da capacidade dedutiva do haRVey à teoria dos conjuntos. Assim, através do mapeamento dos operadores de conjunto fornecidos pela linguagem B a classes da teoria NBG, obtem-se uma abordagem alternativa para a checagem de SMT aplicada ao método B
Resumo:
O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados
Resumo:
The constant increase of complexity in computer applications demands the development of more powerful hardware support for them. With processor's operational frequency reaching its limit, the most viable solution is the use of parallelism. Based on parallelism techniques and the progressive growth in the capacity of transistors integration in a single chip is the concept of MPSoCs (Multi-Processor System-on-Chip). MPSoCs will eventually become a cheaper and faster alternative to supercomputers and clusters, and applications developed for these high performance systems will migrate to computers equipped with MP-SoCs containing dozens to hundreds of computation cores. In particular, applications in the area of oil and natural gas exploration are also characterized by the high processing capacity required and would benefit greatly from these high performance systems. This work intends to evaluate a traditional and complex application of the oil and gas industry known as reservoir simulation, developing a solution with integrated computational systems in a single chip, with hundreds of functional unities. For this, as the STORM (MPSoC Directory-Based Platform) platform already has a shared memory model, a new distributed memory model were developed. Also a message passing library has been developed folowing MPI standard
Resumo:
This paper presents a contribution to the international Verified Software Repository effort through the formal specification of the microkernel FreeRTOS real-time system. Such specification was made in abstract level making use of the B method . For thus, properties of the microkernel were chosen and selected as specification requisites, which was constructed centered at the functionalities responsible for the utilization of these properties. This properties weres setting as specification requirements. The specification was constructed modeling the function of microkernel that implement this properties. This work intended to encourage the formal verification of FreeRTOS and also contribute to the formal creation of a microkernel real-time systems, based in FreeRTOS. Furthermore, this model brings a formal documentation point view of the microkernel, demonstrating features and how this internal states is changing. Finally, this work could be an example of specification of the actual system by the B method.
Resumo:
This work presents the concept, design and implementation of a MP-SoC platform, named STORM (MP-SoC DirecTory-Based PlatfORM). Currently the platform is composed of the following modules: SPARC V8 processor, GPOP processor, Cache module, Memory module, Directory module and two different modles of Network-on-Chip, NoCX4 and Obese Tree. All modules were implemented using SystemC, simulated and validated, individually or in group. The modules description is presented in details. For programming the platform in C it was implemented a SPARC assembler, fully compatible with gcc s generated assembly code. For the parallel programming it was implemented a library for mutex managing, using the due assembler s support. A total of 10 simulations of increasing complexity are presented for the validation of the presented concepts. The simulations include real parallel applications, such as matrix multiplication, Mergesort, KMP, Motion Estimation and DCT 2D
Resumo:
The development of smart card applications requires a high level of reliability. Formal methods provide means for this reliability to be achieved. The BSmart method and tool contribute to the development of smart card applications with the support of the B method, generating Java Card code from B specifications. For the development with BSmart to be effectively rigorous without overloading the user it is important to have a library of reusable components built in B. The goal of KitSmart is to provide this support. A first research about the composition of this library was a graduation work from Universidade Federal do Rio Grande do Norte, made by Thiago Dutra in 2006. This first version of the kit resulted in a specification of Java Card primitive types byte, short and boolean in B and the creation of reusable components for application development. This work provides an improvement of KitSmart with the addition of API Java Card specification made in B and a guide for the creation of new components. The API Java Card in B, besides being available to be used for development of applications, is also useful as a documentation of each API class. The reusable components correspond to modules to manipulate specific structures, such as date and time. These structures are not available for B or Java Card. These components for Java Card are generated from specifications formally verified in B. The guide contains quick reference on how to specify some structures and how some situations were adapted from object-orientation to the B Method. This work was evaluated through a case study made through the BSmart tool, that makes use of the KitSmart library. In this case study, it is possible to see the contribution of the components in a B specification. This kit should be useful for B method users and Java Card application developers
Resumo:
PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs
Resumo:
The Reconfigurable Computing is an intermediate solution at the resolution of complex problems, making possible to combine the speed of the hardware with the flexibility of the software. An reconfigurable architecture possess some goals, among these the increase of performance. The use of reconfigurable architectures to increase the performance of systems is a well known technology, specially because of the possibility of implementing certain slow algorithms in the current processors directly in hardware. Amongst the various segments that use reconfigurable architectures the reconfigurable processors deserve a special mention. These processors combine the functions of a microprocessor with a reconfigurable logic and can be adapted after the development process. Reconfigurable Instruction Set Processors (RISP) are a subgroup of the reconfigurable processors, that have as goal the reconfiguration of the instruction set of the processor, involving issues such formats, operands and operations of the instructions. This work possess as main objective the development of a RISP processor, combining the techniques of configuration of the set of executed instructions of the processor during the development, and reconfiguration of itself in execution time. The project and implementation in VHDL of this RISP processor has as intention to prove the applicability and the efficiency of two concepts: to use more than one set of fixed instructions, with only one set active in a given time, and the possibility to create and combine new instructions, in a way that the processor pass to recognize and use them in real time as if these existed in the fixed set of instruction. The creation and combination of instructions is made through a reconfiguration unit, incorporated to the processor. This unit allows the user to send custom instructions to the processor, so that later he can use them as if they were fixed instructions of the processor. In this work can also be found simulations of applications involving fixed and custom instructions and results of the comparisons between these applications in relation to the consumption of power and the time of execution, which confirm the attainment of the goals for which the processor was developed
Resumo:
New programming language paradigms have commonly been tested and eventually incorporated into hardware description languages. Recently, aspect-oriented programming (AOP) has shown successful in improving the modularity of object-oriented and structured languages such Java, C++ and C. Thus, one can expect that, using AOP, one can improve the understanding of the hardware systems under design, as well as make its components more reusable and easier to maintain. We apply AOP in applications developed using the SystemC library. Several examples will be presented illustrating how to combine AOP and SystemC. During the presentation of these examples, the benefits of this new approach will also be discussed
Resumo:
This work presents the tVoice, software that manipulates tags languages, extracting information and, being integral part of the VoiceProxy system, it aids bearers of special needs in the access to the Web. This system is responsible for the search and treatment of the documents in the Web, extracting the textual information contained in those documents and preceding the capability of generating eventually through translation techniques, an audio script, used by the of interface subsystem of VoiceProxy, the iVoice, in the process of voice synthesis. In this stage the tVoice, besides the treatment of the tag language HTML, processes other two formats of documents, PDF and XHTML. Additionally to allow that, besides the iVoice, other interface subsystems can make use of the tVoice through remote access, we propose distribution systems techniques based in the model Client-Server providers operations of the fashion of a proxy server treatment of documents
Resumo:
The widespread growth in the use of smart cards (by banks, transport services, and cell phones, etc) has brought an important fact that must be addressed: the need of tools that can be used to verify such cards, so to guarantee the correctness of their software. As the vast majority of cards that are being developed nowadays use the JavaCard technology as they software layer, the use of the Java Modeling Language (JML) to specify their programs appear as a natural solution. JML is a formal language tailored to Java. It has been inspired by methodologies from Larch and Eiffel, and has been widely adopted as the de facto language when dealing with specification of any Java related program. Various tools that make use of JML have already been developed, covering a wide range of functionalities, such as run time and static checking. But the tools existent so far for static checking are not fully automated, and, those that are, do not offer an adequate level of soundness and completeness. Our objective is to contribute to a series of techniques, that can be used to accomplish a fully automated and confident verification of JavaCard applets. In this work we present the first steps to this. With the use of a software platform comprised by Krakatoa, Why and haRVey, we developed a set of techniques to reduce the size of the theory necessary to verify the specifications. Such techniques have yielded very good results, with gains of almost 100% in all tested cases, and has proved as a valuable technique to be used, not only in this, but in most real world problems related to automatic verification
Resumo:
Ayant comme opérateur cognitif le livre Les Voyages de Gulliver, de Jonathan Swift, la thése, écrite au format d'un journal de bord, suit dévoilant des indices pour une archéologie de la compréhension, au-delà de problématiser les interconexions entre communication et compréhension à l'actuel procés de planétarism. En suite, réalise quelques essais qui problématisent l'éthique, la science, et la condition humaine, sous l'inspiration du Parlément des Choses, suggéreé par Bruno Latour, où sont présents, symétriquement, les sciences, les scientists, les politiques, les natures, les cultures, et les sociétés. Pour une telle aventure, sont agencées des ideas de penseurs de diverses domaines de la connaissance, comme Edgar Morin, Henri Atlan, Hans-Georg Gadamer, Isabelle Stengers, David Bohm, Maria da Conceição de Almeida, Cremilda Medina, María Zambrano, Michel Serres, Boris Cyrulnik, dentre autres. Lettres de musique, registres littéraires et cinématographiques servent de points d'appuy pour la contextualization du récit de ce voyage qui ne comporte pas seulement la compréhension de la compléxité de l'être-humain, mais aussi, la compréhension des conditions dans lequelles sont forgées les mentalités et pratiques les actions. Ainsi, toule compréhension est un voyage sans fin: arrive à quelques ports, se ré-approvisionne et part à nouveau. Toute compréhension est ponctuelle, parcielle, provisoire, lacunaire et inachevée.
Resumo:
This work shows a project method proposed to design and build software components from the software functional m del up to assembly code level in a rigorous fashion. This method is based on the B method, which was developed with support and interest of British Petroleum (BP). One goal of this methodology is to contribute to solve an important problem, known as The Verifying Compiler. Besides, this work describes a formal model of Z80 microcontroller and a real system of petroleum area. To achieve this goal, the formal model of Z80 was developed and documented, as it is one key component for the verification upto the assembly level. In order to improve the mentioned methodology, it was applied on a petroleum production test system, which is presented in this work. Part of this technique is performed manually. However, almost of these activities can be automated by a specific compiler. To build such compiler, the formal modelling of microcontroller and modelling of production test system should provide relevant knowledge and experiences to the design of a new compiler. In ummary, this work should improve the viability of one of the most stringent criteria for formal verification: speeding up the verification process, reducing design time and increasing the quality and reliability of the product of the final software. All these qualities are very important for systems that involve serious risks or in need of a high confidence, which is very common in the petroleum industry