522 resultados para Soldagem eletrica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental senses of the human body are: vision, hearing, touch, taste and smell. These senses are the functions that provide our relationship with the environment. The vision serves as a sensory receptor responsible for obtaining information from the outside world that will be sent to the brain. The gaze reflects its attention, intention and interest. Therefore, the estimation of gaze direction, using computer tools, provides a promising alternative to improve the capacity of human-computer interaction, mainly with respect to those people who suffer from motor deficiencies. Thus, the objective of this work is to present a non-intrusive system that basically uses a personal computer and a low cost webcam, combined with the use of digital image processing techniques, Wavelets transforms and pattern recognition, such as artificial neural network models, resulting in a complete system that performs since the image acquisition (including face detection and eye tracking) to the estimation of gaze direction. The obtained results show the feasibility of the proposed system, as well as several feature advantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work an algorithm for fault location is proposed. It contains the following functions: fault detection, fault classification and fault location. Mathematical Morphology is used to process currents obtained in the monitored terminals. Unlike Fourier and Wavelet transforms that are usually applied to fault location, the Mathematical Morphology is a non-linear operation that uses only basic operation (sum, subtraction, maximum and minimum). Thus, Mathematical Morphology is computationally very efficient. For detection and classification functions, the Morphological Wavelet was used. On fault location module the Multiresolution Morphological Gradient was used to detect the traveling waves and their polarities. Hence, recorded the arrival in the two first traveling waves incident at the measured terminal and knowing the velocity of propagation, pinpoint the fault location can be estimated. The algorithm was applied in a 440 kV power transmission system, simulated on ATP. Several fault conditions where studied and the following parameters were evaluated: fault location, fault type, fault resistance, fault inception angle, noise level and sampling rate. The results show that the application of Mathematical Morphology in faults location is very promising

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The robustness and performance of the Variable Structure Adaptive Pole Placement Controller are evaluated in this work, where this controller is applied to control a synchronous generator connected to an infinite bus. The evaluation of the robustness of this controller will be accomplished through simulations, where the control algorithm was subjected to adverse conditions, such as: disturbances, parametric variations and unmodeled dynamic. It was also made a comparison of this control strategy with another one, using classic controllers. In the simulations, it is used a coupled model of the synchronous generator which variables have a high degree of coupling, in other words, if there is a change in the input variables of the generator, it will change all outputs simultaneously. The simulation results show which control strategy performs better and is more robust to disturbances, parametric variations and unmodeled dynamics for the control of Synchronous Generator

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aims at developing a variable structure adaptive backstepping controller (VS-ABC) by using state observers for SISO (Single Input Single Output), linear and time invariant systems with relative degree one. Therefore, the lters were replaced by a Luenberger Adaptive Observer and the control algorithm uses switching laws. The presented simulations compare the controller performance, considering when the state variables are estimated by an observer, with the case that the variables are available for measurement. Even with numerous performance advantages, adaptive backstepping controllers still have very complex algorithms, especially when the system state variables are not measured, since the use of lters on the plant input and output is not something trivial. As an attempt to make the controller design more intuitive, an adaptive observer as an alternative to commonly used K lters can be used. Furthermore, since the states variables are considered known, the controller has a reduction on the dependence of the unknown plant parameters on the design. Also, switching laws could be used in the controller instead of the traditional integral adaptive laws because they improve the system transient performance and increase the robustness against external disturbances in the plant input

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the technology progess, embedded systems using adaptive techniques are being used frequently. One of these techniques is the Variable Structure Model- Reference Adaptive Control (VS-MRAC). The implementation of this technique in embedded systems, requires consideration of a sampling period which if not taken into consideration, can adversely affect system performance and even takes the system to instability. This work proposes a stability analysis of a discrete-time VS-MRAC accomplished for SISO linear time-invariant plants with relative degree one. The aim is to analyse the in uence of the sampling period in the system performance and the relation of this period with the chattering and system instability

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta uma técnica de verificação formal de Sistemas de Raciocínio Procedural, PRS (Procedural Reasoning System), uma linguagem de programação que utiliza a abordagem do raciocínio procedural. Esta técnica baseia-se na utilização de regras de conversão entre programas PRS e Redes de Petri Coloridas (RPC). Para isso, são apresentadas regras de conversão de um sub-conjunto bem expressivo da maioria da sintaxe utilizada na linguagem PRS para RPC. A fim de proceder fia verificação formal do programa PRS especificado, uma vez que se disponha da rede de Petri equivalente ao programa PRS, utilizamos o formalismo das RPCs (verificação das propriedades estruturais e comportamentais) para analisarmos formalmente o programa PRS equivalente. Utilizamos uma ferramenta computacional disponível para desenhar, simular e analisar as redes de Petri coloridas geradas. Uma vez que disponhamos das regras de conversão PRS-RPC, podemos ser levados a querer fazer esta conversão de maneira estritamente manual. No entanto, a probabilidade de introdução de erros na conversão é grande, fazendo com que o esforço necessário para garantirmos a corretude da conversão manual seja da mesma ordem de grandeza que a eliminação de eventuais erros diretamente no programa PRS original. Assim, a conversão automatizada é de suma importância para evitar que a conversão manual nos leve a erros indesejáveis, podendo invalidar todo o processo de conversão. A principal contribuição deste trabalho de pesquisa diz respeito ao desenvolvimento de uma técnica de verificação formal automatizada que consiste basicamente em duas etapas distintas, embora inter-relacionadas. A primeira fase diz respeito fias regras de conversão de PRS para RPC. A segunda fase é concernente ao desenvolvimento de um conversor para fazer a transformação de maneira automatizada dos programas PRS para as RPCs. A conversão automática é possível, porque todas as regras de conversão apresentadas seguem leis de formação genéricas, passíveis de serem incluídas em algoritmos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Multiple Input Multiple Output (MIMO) systems has permitted the recent evolution of wireless communication standards. The Spatial Multiplexing MIMO technique, in particular, provides a linear gain at the transmission capacity with the minimum between the numbers of transmit and receive antennas. To obtain a near capacity performance in SM-MIMO systems a soft decision Maximum A Posteriori Probability MIMO detector is necessary. However, such detector is too complex for practical solutions. Hence, the goal of a MIMO detector algorithm aimed for implementation is to get a good approximation of the ideal detector while keeping an acceptable complexity. Moreover, the algorithm needs to be mapped to a VLSI architecture with small area and high data rate. Since Spatial Multiplexing is a recent technique, it is argued that there is still much room for development of related algorithms and architectures. Therefore, this thesis focused on the study of sub optimum algorithms and VLSI architectures for broadband MIMO detector with soft decision. As a result, novel algorithms have been developed starting from proposals of optimizations for already established algorithms. Based on these results, new MIMO detector architectures with configurable modulation and competitive area, performance and data rate parameters are here proposed. The developed algorithms have been extensively simulated and the architectures were synthesized so that the results can serve as a reference for other works in the area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection and diagnosis of faults, ie., find out how , where and why failures occur is an important area of study since man came to be replaced by machines. However, no technique studied to date can solve definitively the problem. Differences in dynamic systems, whether linear, nonlinear, variant or invariant in time, with physical or analytical redundancy, hamper research in order to obtain a unique solution . In this paper, a technique for fault detection and diagnosis (FDD) will be presented in dynamic systems using state observers in conjunction with other tools in order to create a hybrid FDD. A modified state observer is used to create a residue that allows also the detection and diagnosis of faults. A bank of faults signatures will be created using statistical tools and finally an approach using mean squared error ( MSE ) will assist in the study of the behavior of fault diagnosis even in the presence of noise . This methodology is then applied to an educational plant with coupled tanks and other with industrial instrumentation to validate the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.