687 resultados para Desenvolvimento pre-natal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetables drying plays an important role in the field of food dehydration, being a very old practice that was originated from sun drying items of food in order to preserve them to be consumed during the periods of scarcity. One of these vegetables is the tomato, that was originally grown in South America. Tomatoes are easily perishable after being picked up from the tree and this makes the process of tomato dehydration a challenge due to the high amount of water (95%) contained in them. The present research work was mainly intended to develop alternative processes for tomato conservation, by drying slices of skinned and unskinned tomatoes in the in natura form or in the osmotically pre-dehydrated form. Firstly, the best conditions of the osmotic pre-dehydration process were defined including temperature, immersion time and concentration of the osmotic solution, based on the results of water loss, solids gain and weigh reduction of the pre-dehydration tomatoes at different processing conditions. The osmotic solution used was made up of NaCl (5 and 10%) and sucrose (25 and 35%) at different combinations. For a fixed conditions of osmotic pre-dehydration, the drying tests of the pre-processed and in natura tomatoes were carried out in a stove with air circulation and a convective dryer with trays, at two levels of temperature. The sensorial analysis of the osmotically pre-treated and unskinned dehydrated tomatoes was carried out as well as a study on the their shelf-live. The results obtained showed that the drying of the tomatoes took place as a result of the internal control of the water transport, and did not show a constant rate, while two distinct periods of the decreasing phase were observed. The osmotic pre treatment substancially reduced the initial amount of humidity in the tomatoes, thus reducing the necessary time for the product to attain levels of intermediate humidity. The impermeability of the tomato skin was identified as well as the unfavorable influence of the pre-treatment on the unskinned tomatoes, whose solid gain brought about a decrease in the water activity with subsequent reduction of the drying rate. Despite the various simplifications carried out during the development of this study, the proposed diffusive model adjusted to the experimental data satisfactorily, thus making it possible to determine the effective coefficients of diffusion, whose results were consistent and compatible with those found in the current literature. Concerning the higher rates of evaporation and the lowest processing time, the best results were obtained in the drying of the unskinned, in natura tomatoes and of the skinned, pre-dehydrated tomatoes, at 60ºC, both processed in the convective drier. The results of the sensorial analysis of the unskinned and pre-treated product did not prove to be satisfactory. Regarding the shelf-live of the tomatoes, for a period of 45 days, no physicochemical or microbiological alteration of the product was noted

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulolytic enzymatic broth by Trichoderma reesei ATCC 2768 cultived in shaker using cashew apple bagasse and coconut shell bagasse, as substrate for fermentation, was used to investigate the enzymatic hydrolysis of these substrates after pre-treatment with 1 M NaOH, wet-oxidation as well as a combination of these treatments. Hydrolysis runs were carried at 125 rpm, 50ºC and initial pH of 4.8 for 108 hours. Enzymatic broth produced using cashew apple bagasse treated with 1M NaOH (1.337 UI/mL CMCase and 0.074 UI/mL FPase), showed after the hydrolysis an initial of 0.094 g of reducing sugar/g of substrate.h with 96% yield of total reducing sugars while for the coconut shell bagasse treated using the alkaline process (0.640 UI/mL CMCase and 0.070 UI/mL FPase) exhibited an initial hydrolysis velocity of 0.025 g of reducing sugar/g of substrate.h with 48% yield of total reducing sugars. For the treatment with wet-oxidation using cashew apple bagasse as substrate enzymatic broth (0.547 UI/mL CMCase) exhibited an initial hydrolysis velocity of 0.014 g of reducing sugars/g of substrate.h with a lower yield about 89% of total reducing sugars compared to the alkaline treatment. Enzymatic broth produced using coconut shell treated by wet-oxidation showed an initial hydrolysis velocity of 0.029 g of reducing sugar/g of substrate.h with 91% yield. However, when the combination of these two treatments were used it was obtained an enzymatic broth of 1.154 UI/mL CMCase and 0.107 FPase for the cashew apple bagasse as well as 0.538 UI/mL CMCase and 0,013 UI/mL de FPase for the coconut shell bagasse. After hydrolysis, initial velocity was 0.029 g of reducing sugar/g of substrate.h. with 94% yield for the cashew apple bagasse and 0.018 g de reducing sugar/g of substrate.h with 69% yield for coconut shell bagasse. Preliminary treatment improves residues digestibility showing good yields after hydrolysis. In this case, cellulose from the residue can be converted into glucose by cellulolytic enzymes that can be used for ethanol production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the area of food dehydration, drying of vegetables has a very representative position, it has the objective to preserve the surplus of crops and began with sun drying. Among the vegetable is the carrot, which had its origin in Southeast Asia and in Brazil is a vegetable cultivated enough. The principal objective of this works is to find alternative ways for the conservation of carrot slices by osmotic dehydration with additional drying in heart. Were initially defined the best conditions of pre-osmotic dehydration (temperature, immersion time, type of osmotic solution) based on the results of humidity loss, solid gain, weight reduction and efficiency ratio of predehydrated carrots slices. The osmotic solutions used were composed by NaCl (10%) and sucrose (50 ° Brix) named DO1 and sucrose (50 ° Brix) called DO2. Was made experiment of pre-osmotic dehydration of carrot slices in two temperature levels, with complementary drying in heart with air circulation at 70 º C. Sensory analysis was performed and the study of slices dehydration osmotically and the slices without osmotic treatment. The best results were obtained with the solution DO1 60°C with immersion time of 60 min. The drying of carrot slices presented period of constant rate and decreasing rate. The osmotic pre-treatment reduced the initial humidity of carrot slices, reducing the time to the product to reach the same humidity content. Fick's model, considering the shrinkage, and the Page s model, adapt satisfactorily to experimental datas, allowing the determination of effective diffusion coefficients, consistent with the references. The results of sensory analysis of dry product, showed greater acceptance of sliced carrots with osmotic treatment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation aims the development of an experimental device to determine quantitatively the content of benzene, toluene and xylenes (BTX) in the atmosphere. BTX are extremely volatile solvents, and therefore play an important role in atmospheric chemistry, being precursors in the tropospheric ozone formation. In this work a BTX new standard gas was produced in nitrogen for stagnant systems. The aim of this dissertation is to develop a new method, simple and cheaper, to quantify and monitor BTX in air using solid phase microextraction/ gas chromatography/mass spectrometry (SPME/CG/MS). The features of the calibration method proposed are presented in this dissertation. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fiber exposed for 10 min standard gas mixtures. It is observed that the main parameters that affect the extraction process are sampling time and concentration. The results of the BTX multicomponent system studied have shown a linear and a nonlinear range. In the non-linear range, it is remarkable the effect of competition by selective adsorption with the following affinity order p-xylene > toluene > benzene. This behavior represents a limitation of the method, however being in accordance with the literature. Furthermore, this behavior does not prevent the application of the technique out of the non-linear region to quantify the BTX contents in the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coalho cheese is a typical product of the Northeastern Brazil, which is consumed both raw and cooked. The present work aimed to study the characteristics of artisanal and industrial processes in the production of coalho cheese sold in Natal / RN in order to evaluate its quality and consumer s profile. Four artisanal cheeses plants were monitored and a questionnaire was sent to different cheese industries. Besides this, eight cheese samples (four artisanal and four industrial) were evaluated in regard to the microbiological quality, physical-chemical and sensory attributes. The sensory acceptance was evaluated by using 108 non-trained panelists by using the hedonic scale. The consumer s profile survey was applied to 400 consumers of coalho cheese. The lack of hygiene control was detected at the artisanal cheese production, which uses raw milk as its raw material. Research has shown that the industrialized cheeses are made from pasteurized milk provided by their own production or by a third party, as observed in cheese making dairies. In general, the results indicate variation in the manufacturing process of coalho cheese, which results in the lack of product standardization. Regarding the physical-chemical analysis, most artisanal and industrial samples presented moisture content between 36 and 40 %, classified as medium moisture cheese, which is the only parameter that showed no significant difference (p>0.05). However, the water activity (Aw), pH and acidity results differed significantly. All artisanal samples showed coliform contamination at 35 °C, which confirms the poor hygienic conditions. In regard to coliforms at 45 °C, 75 % of artisanal coalho cheese samples had value higher than 103 MPN / g, a value above the lawful limits determined by RDC nº 12. Fifty percent of industrial coalho cheese samples showed coagulase-positive Staphylococcus values above the limit allowed by the RDC nº 12, indicating poor handling. The sensory evaluation revealed that the taste was the only parameter that showed significant difference, and this difference was only between two industrial brands. The consumer s survey showed that the coalho cheese flavor is the most important reason for buying this kind of cheese. Although coalho cheese is mainly bought in supermarkets, open street markets and country shops are still important selling points. It is concluded that there is no coalho cheese standardization in the RN state, which leads to variations in physical-chemical and sensory attributes. Moreover, it is necessary greater hygiene control in the production and handling procedures of coalho cheese.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All around the world, naturally occurring hydrocarbon deposits, consisting of oil and gas contained within rocks called reservoir rocks , generally sandstone or carbonate exists. These deposits are in varying conditions of pressure and depth from a few hundred to several thousand meters. In general, shallow reservoirs have greater tendency to fracture, since they have low fracture gradient, ie fractures are formed even with relatively low hydrostatic columns of fluid. These low fracture gradient areas are particularly common in onshore areas, like the Rio Grande do Norte basin. During a well drilling, one of the most favorable phases for the occurrence of fractures is during cementing, since the cement slurry used can have greater densities than the maximum allowed by the rock structure. Furthermore, in areas which are already naturally fractured, the use of regular cement slurries causes fluid loss into the formation, which may give rise to failures cementations and formation damages. Commercially, there are alternatives to the development of lightweight cement slurries, but these fail either because of their enormous cost, or because the cement properties were not good enough for most general applications, being restricted to each transaction for which the cement paste was made, or both reasons. In this work a statistical design was made to determine the influence of three variables, defined as the calcium chloride concentration, vermiculite concentration and nanosilica concentration in the various properties of the cement. The use of vermiculite, a low density ore present in large amounts in northeastern Brazil, as extensor for cementing slurries, enabled the production of stable cements, with high water/cement ratio, excellent rheological properties and low densities, which were set at 12.5 lb / gal, despite the fact that lower densities could be achieved. It is also seen that the calcium chloride is very useful as gelling and thickening agent, and their use in combination with nanosilica has a great effect on gel strength of the cement. Hydrothermal Stability studies showed that the pastes were stable in these conditions, and mechanical resistance tests showed values of the order of up to 10 MPa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industries of food, medicine and cosmetic apply microencapsulation for many reasons, among them, stabilize the active, control the release of encapsulated and separate incompatible components of the formulation. In this context, microencapsulation techniques have been used in the food industry to provide stable liquid and solid ingredients. Anthocyanins have high antioxidant potential, but they are photodegradable. The challenges are therefore directed to the research for techniques that could make this potential remaining active and bioavailable and could be used as a vehicle for the delivery release of bioactive and micronutrients in appropriate conditions and levels. This work has as main objective to propose a method to encapsulate the anthocyanins in the extract of mountain apple using the interfacial polymerization technique. As well as to define the ideal conditions of temperature and agitation system for this procedure. The microparticles were characterized for size, morphology, active distribution, surface charge, degradation, composition and stability. The results, like particle diameter of 5.94 μm and Zeta potential of 7.03 mV, showed that the technique used to obtain these microparticles was satisfactory and has potential for application in cosmetics and food

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green bean is considered as one of most traditional Brazilian Northeast dishes. Green beans drying preliminary experiments show that combine processes, fixed-bed/spouted bed, resulted in dehydrated beans with uniform humidity and the recovery of the beans properties after their rehydration. From this assays was defined an initial humidity suited for the spouted bed process. A fixed-bed pre-drying process until a level of 40% humidity gave the best results. The spouted bed characteristic hydrodynamic curves were presented for different beans loads, where changes in the respective beans physical properties were evidenced during the fluidynamic assay, due simultaneous drying process. One 22 factorial experimental design was carried out with three repetition in the central point, considering as entry variables: drying air velocity and temperature. The response variables were the beans brakeage, water fraction evaporated during 20 and 50 minutes of drying and the humidity ratio. They are presented still the modeling of the drying of the green beans in fine layer in the drier of tray and the modeling of the shrinking of the beans of the drying processes fixed-bed and spouted bed