629 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil is a great ceramic raw materials productor because of the its big number of clay deposits, in various areas of the ceramic industry. Although, the majority of the natural reservations are unknown or not studied yet, so there is no scientific technical dates that can guide their usage and industrial application, as well as the racional and optimazed way of usage by the industrial sector. The state of Maranhão has a gigant mineral wealth as esmectite, bentonite, kaolin, clays, feldspates, marine salt, iron and others, but produce only products with small agregated value compared to the porcelanato, one of the most expensives ceramic cover tiles, the reason for that is the low water absorption (lower than 0,5%), beside present amazing tecnicals features, like mechanical resistence. The main objective of the work is to do the characterization of four clays, with the finallity of find an application by the results and develop formulations to produce porcelanato using these raw materials from Timon-MA. For this were made the raw materials characterization using X ray fluorecence; X ray diffraction; Differencial thermal analysis; Dilatometric analysis and Tecnological properties, planing three formulations that were sinterized at six different temperatures: 1150, 1170, 1190, 1210, 1230 and 1250ºC for 7 minutes. After the sinteratization, the samples were submitted to tension resistance analysis. Were attained two formulations with the requested properties to produce porcelanato

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ceramics industry in Piauí is nowadays with 55 industries where 11 are in Teresina which is the mainstream of the state, producing 55 million shingles; in which 10 % is of this production is wasted being sometimes thrown on the margins of rivers, roads and highways provoking an environmental degradation. The main goal of this work is to verify the potential of producing semi porous ceramic using grog of shingles, on the first part of this work bodies-of-proof were produced from a basic formula of an industry, doping it with 5 %, 10 %, 15 % and 20 % in mass and in the second part of this work some bodies-of-proof were produced from a formula where one raw material was substituted by 50 % of grog and another substituting it all by grog, bodies-of-proof made of a basic formula previously announced was used for experiment control.The grog and the raw materials were characterized by: particle size analysis , thermal differential analysis, X ray diffraction , X ray fluorescence, an thermal gravimetric analysis and rational analyses. The bodies-of-proof were sintetisized in an industrial oven obeying the normal cycle adopted by an industry, with peak temperatures of 1135 oC and a fast burning cycle of 25 minutes having as energetic fuel liquefied petroleum gas . The pieces that were obtained by this were submersed in rehearsed physics of: water absorption of, apparent specific mass, apparent porosity, lineal retraction, rupture tension to the flexural and dilatometry; mineralogical analysis for X ray diffraction; and microstructural for electronic microscope of sweeping. For all the formulas with addition of grog, superior priorities to the requested by the requirements for semi porous and for the formula to F2-2,5 superior priorities to standard formulas which justifies the incorporation of the shingles in mass for the semi porous ceramic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are ores of clay in Piauí State that are used for red structural ceramics, which are naturally contaminated with calcareous vein. This is one thing that impedes its exploration in an adequate way, especially for tile production. The present work aims at verifying the influence of the calcareous contents in the technological structural ceramics area, seeking to determine a maximum permissible calcareous proportion/contents in the ceramic mass using the patterns of the local industry production. For the consecution of this paper, it was characterized the clay and calcareous material by FRX, DRX, TGA and DTA. It was also configurated by extrusion and burnt in the temperatures of 850°C, 900°C, 950°C and 1000°C pieces of the corpus with 0, 5, 10, 15 e 20% of calcareous proportion. After that, it was carried out technological samples of linear retraction, water absortion, apparent porosity, specific apparent mass and mechanic resistance. The results showed the possibility of using calcareous in the ceramic mass and in some cases the technological properties got better

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A frequently encountered difficulty in oral prosthetics is associated with the loss of metallic alloys during the melting stage of the production of metal-ceramic replacement systems. Remelting such materials could impar their use in oral rehabilitation due to loss in esthetics, as well as in the chemical, physical, electrochemical and mechanical properties. Nowadays, the Ni-Cr-Mo-Ti alloy is widely used in metal-ceramic systems. Manufacturers state that this material can be remelted without significant alterations in its behavior, however little has been established as to the changes in the performance of this alloy after successive remelting, which is common practice in oral prosthetics. Therefore, the objective of this study was to evaluate possible changes in the esthetics and associated properties of metalceramic samples consisting of Ni-Cr-Mo-Ti and dental porcelain. Three to five remelting steps were carried out. The results revealed that Ni-Cr-Mo-Ti can be safely used even after three remelting steps. Further remelting significantly affect the characteristics of the alloys and should not be recommended for the manufacture of metal-ceramic systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining industry is responsible for the generation of waste from their natural process of extraction. The mining impacts in urban areas are of special importance due to the high urban occupation, which are exacerbated due to the proximity of the mined areas and populated areas. Some solutions to wastedisposal have the potential to significantly reduce the environmental risks and liabilities, but represent higher costs in the stages of deployment and operation. The addition of mining waste as raw material in the development of commercial products reduces the environmental impacts, transforming the waste into a positive element in the generation of employment and income. This thesis studies the incorporation of waste iron ore in two clays, one from the ceramic industry of the City of Natal and the other from the ceramic industry of the Seridó Region, both in the State of Rio Grande do Norte, Brazil. Percentages of iron ore waste of 5%, 10% , 15%, 20%, 25% and 30% were used in the tested ceramic matrix. The two clays and the iron ore waste used as part of this investigation were characterized by X-ray diffraction tests, X-ray fluorescence tests, differential thermal analysis, thermogravimetric analysis and dilatometric analysis. The samples were sintered under temperatures of 850 °C, 950 °C and 1050°C at a heating rate of 5 °C/min with isotherms of two hours. The following tests were performed with the samples: linear shrinkage, water absorption, apparent porosity, apparent density, mass loss in fire and bending resistance in order to obtain their physical and mechanical properties. An amount of 5% of waste iron ore in the matrix clay at a temperature of 850 0C resulted in na increase of about 65% in the tensile strength of the clay samples from the Natal ceramic industry. A linear shrinkage of only 0.12% was observed for the samples, which indicates that the physical properties of the final product were not influenced by the addition of the waste

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process