21 resultados para math.AT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is the result of a study that aimed to start scoring difficulties that the math teacher is trying to get a historical formation. Considering that the textbook is the material with which the teacher has more contact, start with reading historical texts present in these books. Choose a theme and choose from that we observed limitations ranging from the search for sources of research in relation to the actual historical content. There are many studies that show the importance of the history of mathematics in teacher education and also in the teaching and learning of mathematics. These works , in particular the work of Feliciano (2008 ) entitled : " The use of history of mathematics in the classroom " , along with the information , experiences and opinions given by Professor Anderson Luís de Azevedo Paulo , in some meetings , point to need for materials for teaching , since they show that recognizes the importance of this knowledge and the ability to use it in the classroom , but several factors have pushed aside , even the texts present in textbooks. From the analysis of some of the work and contributions of Professor Anderson Paulo we pointed out some of the factors that make historical texts being ignored by teachers and among them are characteristics in appearance and content in the text. To assist in the preparation of materials that meet the expectations of the teacher, we present a manual with suggestions and / or features to choose or produce a good text. These suggestions can make the history books more enjoyable and thus approach the teacher of historical knowledge and later encouraged to seek, in fact, a historical formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interval datatype applications in several areas is important to construct a interval type reusable, i.e., a interval constructor can be applied to any datatype and get intervals this datatype. Since the interval is, of certain form, a set of elements limited for two bounds, left and right, with a order notions, then it s reasonable that interval constructor enclose datatypes with partial order. On the order hand, what we want is work with interval of any datatype like this we work with this datatype then. it s important to guarantee the properties of the datatype when maps to interval of this datatype. Thus, the interval constructor get a theory to parametrized interval type, i.e., a interval with generics parameters (for example rational, real, complex). Sometimes, the interval application in some algebras doesn t guarantee the mainutenance of their properties, for example, when we use interval of real, that satisfies the field properties, it doesn t guarantee the distributivity propertie. A form to surpass this problem Santiago introduced the local equality theory that weakened the notion of strong equality, and thus, allowing some properties are local keeped, what can be discard before. The interval arithmetic generalization aim to apply the interval constructor on ordered algebras weakened for local equality with the purpose of the keep their properties. How the intervals are important in applications with continuous data, it s interesting specify that theory using a specification language that supply a system development using intervals of form disciplined, trustworth and safe. Currently, the algebraic specification language, based in math models, have been use to that intention often. We choose CASL (Common Algebraic Specification Language) among others languages because CASL has several characteristics excellent to parametrized interval type, such as, provide parcialiy and parametrization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This present study aimed to examine the use of games with rules in working with math education in regular classes included in Elementary School, in the municipal education schools of Natal/RN, observing the learning process and development of all students, especially those with disabilities. The theoretical references used are based on Vygotsky's works and other authors from the historical-cultural perspective, as well as researchers in the field of Inclusive Education and Mathematics Education. The investigation was based on the qualitative research guidelines, with the application of semi-structured interviews with educational coordinators and teachers from the schools involved as well as classroom observations, looking for, in the speeches of those involved and in their teaching practices, elements to reflect on the Mathematics Inclusive Education, the use of games with rules -starting from its goals, the participation of disabled students, the pedagogical mediations, up to its accessibility - and from the learning of disabled students. The analysis results showed that the concepts underlying the development of inclusive teaching practices still refer to the clinical-medical paradigm, understanding the student with disabilities from their deficiencies; which teachers use, in their majority, the mathematical games with rules in their classes, but which the teaching mediation, during these activities, still needs to be qualified so that they can, effectively, contribute to the learning and development of all students; students with disabilities do not always participate in games with others colleagues; games with rules are rarely accessible; and that the Universal Design principles are not adopted in the selected classrooms for this study. Thus, it is clear that much remains to be done so that Mathematics Education can contribute to the learning and development of all students, and among those actions the teacher continuing education is recommended

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze the Euler Relation generally using as a means to visualize the fundamental idea presented manipulation of concrete materials, so that there is greater ease of understanding of the content, expanding learning for secondary students and even fundamental. The study is an introduction to the topic and leads the reader to understand that the notorious Euler Relation if inadequately presented, is not sufficient to establish the existence of a polyhedron. For analyzing some examples, the text inserts the idea of doubt, showing cases where it is not fit enough numbers to validate the Euler Relation. The research also highlights a theorem certainly unfamiliar to many students and teachers to research the polyhedra, presenting some very simple inequalities relating the amounts of edges, vertices and faces of any convex polyhedron, which clearly specifies the conditions and sufficient necessary for us to see, without the need of viewing the existence of the solid screen. And so we can see various polyhedra and facilitate understanding of what we are exposed, we will use Geogebra, dynamic application that combines mathematical concepts of algebra and geometry and can be found through the link http://www.geogebra.org

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the literature there are several proposals of fuzzi cation of lattices and ideals concepts. Chon in (Korean J. Math 17 (2009), No. 4, 361-374), using the notion of fuzzy order relation de ned by Zadeh, introduced a new notion of fuzzy lattice and studied the level sets of fuzzy lattices, but did not de ne a notion of fuzzy ideals for this type of fuzzy lattice. In this thesis, using the fuzzy lattices de ned by Chon, we de ne fuzzy homomorphism between fuzzy lattices, the operations of product, collapsed sum, lifting, opposite, interval and intuitionistic on bounded fuzzy lattices. They are conceived as extensions of their analogous operations on the classical theory by using this de nition of fuzzy lattices and introduce new results from these operators. In addition, we de ne ideals and lters of fuzzy lattices and concepts in the same way as in their characterization in terms of level and support sets. One of the results found here is the connection among ideals, supports and level sets. The reader will also nd the de nition of some kinds of ideals and lters as well as some results with respect to the intersection among their families. Moreover, we introduce a new notion of fuzzy ideals and fuzzy lters for fuzzy lattices de ned by Chon. We de ne types of fuzzy ideals and fuzzy lters that generalize usual types of ideals and lters of lattices, such as principal ideals, proper ideals, prime ideals and maximal ideals. The main idea is verifying that analogous properties in the classical theory on lattices are maintained in this new theory of fuzzy ideals. We also de ne, a fuzzy homomorphism h from fuzzy lattices L and M and prove some results involving fuzzy homomorphism and fuzzy ideals as if h is a fuzzy monomorphism and the fuzzy image of a fuzzy set ~h(I) is a fuzzy ideal, then I is a fuzzy ideal. Similarly, we prove for proper, prime and maximal fuzzy ideals. Finally, we prove that h is a fuzzy homomorphism from fuzzy lattices L into M if the inverse image of all principal fuzzy ideals of M is a fuzzy ideal of L. Lastly, we introduce the notion of -ideals and - lters of fuzzy lattices and characterize it by using its support and its level set. Moreover, we prove some similar properties in the classical theory of - ideals and - lters, such as, the class of -ideals and - lters are closed under intersection. We also de ne fuzzy -ideals of fuzzy lattices, some properties analogous to the classical theory are also proved and characterize a fuzzy -ideal on operation of product between bounded fuzzy lattices L and M and prove some results.