57 resultados para inferência bayesiana


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trasnversal study, with the objective of evaluating the accuracy of clinical indicators of nursing diagnosis excessive fluid volume in patients undergoing hemodialysis. The study occurred in two stages, the first consisted of the evaluation of the diagnostic indicators in study; and the second, the diagnostic inference conducted by nurse diagnosticians. The first stage occurred from december 2012 to april 2013, in a University Hospital and a Hemodialysis Clinic in Northeastern of Brazil, with a sample of 100 chronic renal failure patients on hemodialysis. The data were selected through an interview form and a physical examination, organized into spreadsheets and analyzed as to the presence or absence of the indicators of diagnosis excessive fluid volume. In the second step, the spreadsheets were sent to three nurses diagnosticians, who judged the presence or absence of diagnosis in the clientele searched. This step was conducted from july to september 2013. For analysis of the data, we used descriptive and inferential statistics. In the descriptive analysis, we used measures of central tendency and dispersion. In inferential analysis, we used the tests Chi- square, Fisher and prevalence ratios. The accuracy of the clinical indicators pertaining to the diagnosis were measured as to the specificity, sensitivity, predictive values, likelihood ratios and Diagnostic Odds Ratio. Also developed a logistic regression. The results were organized in tables and discussed with literature. This study was approved by the Ethics Committee in Research of the Federal University of Rio Grande do Norte, with Presentation Certificate for Ethics Appreciation nº 08696212.7.0000.5537. The results revealed that the diagnosis studied was present in 82% of patients. The characteristics with prevalence above 50 % that stood out were: azotemia, decreased hematocrit, electrolyte imbalance, intake exceeds output, anxiety, edema, decreased hemoglobin, oliguria and blood pressure changes. Eight defining characteristics were presented statistically significant association with the nursing diagnosis investigated: pulmonary congestion, intake exceeds output, electrolytes imbalance, jugular vein distension, edema, weight gain over short period of time, agitation and adventitious breath sounds. Among these, the 10 characteristics which showed higher prevalence ratios were: edema and weight gain over short period of time. The features with the highest sensitivity were edema, electrolytes imbalance and intake exceeds output and the standing out with greater specificity were: anasarca, weight gain over short period of time, change in respiratory pattern, adventitious breath sounds, pulmonary congestion, agitation and jugular vein distension. The indicators jugular vein distension, electrolytes imbalance, intake exceeds output, increased central venous pressure and edema, together, were identified in the logistic regression model as the most significant predictors. It is concluded that the identification of accurate clinical indicators allow a good prediction of the nursing diagnosis of excessive fluid volume in patients undergoing hemodialysis in order to assist the nurse in the inference process, which will contribute to the success of patient care. In addition, nurses will consider for diagnostic inference not only his clinical experience, but also scientific evidence of the occurrence of excessive fluid volume, contributing to the control of volemia in these patients

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta um levantamento dos problemas associados à influência da observabilidade e da visualização radial no projeto de sistemas de monitoramento para redes de grande magnitude e complexidade. Além disso, se propõe a apresentar soluções para parte desses problemas. Através da utilização da Teoria de Redes Complexas, são abordadas duas questões: (i) a localização e a quantidade de nós necessários para garantir uma aquisição de dados capaz de representar o estado da rede de forma efetiva e (ii) a elaboração de um modelo de visualização das informações da rede capaz de ampliar a capacidade de inferência e de entendimento de suas propriedades. A tese estabelece limites teóricos a estas questões e apresenta um estudo sobre a complexidade do monitoramento eficaz, eficiente e escalável de redes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks are powerful tools as they represent probability distributions as graphs. They work with uncertainties of real systems. Since last decade there is a special interest in learning network structures from data. However learning the best network structure is a NP-Hard problem, so many heuristics algorithms to generate network structures from data were created. Many of these algorithms use score metrics to generate the network model. This thesis compare three of most used score metrics. The K-2 algorithm and two pattern benchmarks, ASIA and ALARM, were used to carry out the comparison. Results show that score metrics with hyperparameters that strength the tendency to select simpler network structures are better than score metrics with weaker tendency to select simpler network structures for both metrics (Heckerman-Geiger and modified MDL). Heckerman-Geiger Bayesian score metric works better than MDL with large datasets and MDL works better than Heckerman-Geiger with small datasets. The modified MDL gives similar results to Heckerman-Geiger for large datasets and close results to MDL for small datasets with stronger tendency to select simpler network structures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system