89 resultados para deposição lipídica
Resumo:
Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film
Resumo:
The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria
Resumo:
SILVA, J. S. P. Avaliação histomorfométrica do efeito do ultrasom pulsado nas falhas ósseas provocadas em fêmures de rato: estudo experimental . 2000. 85 f. Dissertação (Mestrado) – Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2000.
Resumo:
Os fatores de crescimento são substâncias moduladoras do processo de cicatrização. O fator de crescimento de fibroblastos básico (FCFß) liberado pelas plaquetas, macrófagos e pelos próprios fibroblastos, estimulam a proliferação celular, a produção de colágeno e de outros elementos da matriz celular, favorecendo o processo da cicatrização, mesmo em situações adversas, como diabetes e uso de corticosteróides. O presente estudo objetivou determinar a influência do FCFb no processo de cicatrização de anastomoses esofageanas em modelo de experimentação animal, avaliando-se a resistência à pressão,formação de tecido de granulação e deposição de colágeno. Método: Foram estudados dois grupos A e B,ambos com 10 ratos de linhagem Wistar, separados de forma aleatória, todos submetidos à secção e anastomose do esôfago por via abdominal. Nos animais do grupo A, foi feita aplicação tópica na linha de sutura de 10ng de FCFb. No grupo B (controle) foi aplicado igual volume de solução salina. Os animais foram sacrificados no 7º dia, o esôfago ressecado para teste de resistência da anastomose, estudo qualitativo do aporte de células inflamatórias, da angiogênese e quantificação do colágeno na zona da anastomose, através de sistema digital. Resultados: A densidade média dos parâmetros histológicos do grupo A foi 9095,51±1284,5, maior que no grupo B, que teve densidade 7162,4±1273,19 (p=0,013). A resistência da anastomose do grupo A teve a média 210±18,88 mmHg, significativamente maior que no grupo B, que atingiu o valor 157±29,55 mmHg (p=0,0024). Conclusão: Este estudo concluiu que o FCFß atuou melhorando a cicatrização e aumentando significativamente a resistência de anastomoses do esôfago realizadas em ratos
Resumo:
This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae
Resumo:
Studies made with polysaccharides of seaweed have demonstrated that these present important biological and pharmacological activities. These composites had presented "scavenging" activity of free radicals, which is important in the mediation of the inflammatory process and in the pathology of diverse disease. Recently, this "scavenging" property has taken some researches to evaluate the antioxidant capacity from various polysaccharides. Considering the limited research with polysaccharides and knowing its largely employed by the pharmaceutical and foodstuffs industries, we have objective to verify the actions from fucans and galactans as antioxidants. The fucans are found in brown seaweed and the galactans (carrageenans) in red seaweed. The fucans were obtained from seaweed Padina gymnospora (F0.5 e F1.1 fractions), common to our coastline and one another fucan, fucoidan, was of origin commercial and extracted from seaweed Fucus vesiculosus. The λ, κ e ι carrageenans were also of origin commercial. The antioxidant activities were tested in superoxide and hydroxyl systems to generated free radicals and for the inhibition of the lipid peroxidation. The results obtained to inhibition of formation the superoxide radicals demonstrated that all polysaccharides presented scavenging activity of superoxide radicals. The fucoidan, F0.5 and F1.1 fractions presented IC50 of 0.058; 0.243 and 0.243 mg/mL, respectively, while IC50 of the λ, κ and ι carrageenans were 0.046; 0.112 and 0.332 mg/mL, respectively. The results to inhibition of formation the hydroxyl radicals demonstrated that all sample had low effect in the inhibition of the formation of these radicals, except the F0.5. For these radicals the IC50 were 0.157 and 0.353 mg/mL to the fucoidan and F1.1, respectively and 0.357; 0.335 and 0.281 mg/mL to λ, κ and ι carrageenans, respectively. All the samples were capacity to inhibition the peroxidation, it present the IC50 of 1.250; 2.753 and 2.341 mg/mL to fucoidan, F0.5 and F1.1, respectively. Already the λ, κ and ι carrageenans presented the IC50 of 2.697; 0.323 and 0.830 mg/mL, respectively. With these findings, we conclude that polysaccharides used in this study presented activity antioxidant, and that fucoidan and the λ carrageenan show a significant "scavenging" activity for the radicals superoxide and the κ carrageenan a significant inhibitory activity for the lipid peroxidation
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.
Resumo:
Galactans are polysaccharides sulfated present in the cell wall of red algae. Carrageenans are galactans well known in the food industry as gelling polysaccharides and for induce inflammatory process in rodents as animal model. The extraction of polysaccharides from A. multifida has been carried out by proteolysis and precipitation in different volumes of acetone, which produced three fractions (F1, F2, and FT). Chemical and physical analyses revealed that these fractions are sulfated galactan predominantly. Results of the antioxidant activity assays showed that all of these fractions have antioxidant activity and that was associated with sulfate content of the analysis of reducing power and total antioxidant capacity. However, these fractions were not effective against lipid peroxidation. The fraction FT presented higher activity on the APTT test at 200 μg (> 240 s). The assessment of the hemolytic activity showed that the FT fraction has the best activity, increasing lyses by the complement system to 42.3% (50 μg) (p< 0,001). The fraction FT showed the best yield, anticoagulant and hemolytic activity between the three fractions and therefore it was choose for the in vivo studies. The Inflammation assessment using the FT fraction (50 mg / kg MB) showed that the cellular migration and the IL-6 production increased 670.1% (p< 0,001) and 531.8% (p< 0,001), respectively. These results confirmed its use as an inflammation inducer in animal model. Cytotoxicity assay results showed that all fractions have toxic effects on 3T3 and HeLa cells after exposition of 48 hours, except when 100 μg for both F1 and FT were used. These results arise the discussion whether these polysaccharides it should be used as additive in foods, cosmetics and medicines.
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Pipelines for the transport of crude oil from the production wells to the collecting stations are named production lines . These pipes are subjected to chemical and electrochemical corrosion according to the environment and the type of petroleum transported. Some of these lines, depending upon the composition of the fluid produced, may leak within less than one year of operation due to internal corrosion. This work aims at the development of composite pipes with an external protecting layer of high density polyurethane for use in production lines of onshore oil wells, meeting operational requirements. The pipes were manufactured using glass fibers, epoxy resin, polyester resin, quartz sand and high density polyurethane. The pipes were produced by filament winding with the deposition of high density polyurethane on the external surface and threaded ends (API 15 HR/PM-VII). Three types of pipes were manufactured: glass/epoxy, glass/epoxy with an external polyurethane layer and glass/epoxy with an intermediate layer of glass fiber, polyester, sand and with an external polyurethane layer. The three samples were characterized by Scanning Electronic Microscopy (SEM) and for the determination of constituent content. In addition, the following tests were conducted: hydrostatic test, instant rupture, shorttime failure pressure, Gardner impact, transverse stiffness and axial tension. Field tests were conducted in Mossoró RN (BRAZIL), where 1,677 meters of piping were used. The tests results of the three types of pipes were compared in two events: after two months from manufacturing of the samples and after nine months of field application. The results indicate that the glass/epoxy pipes with an intermediate layer of fiber glass composite, polyester e sand and with an external layer of high density polyurethane showed superior properties as compared to the other two and met the requirements of pressure class, axial tensile strength, transverse stiffness, impact and environmental conditions, for onshore applications as production lines