18 resultados para Time-dependent variables
Resumo:
The present work investigates some consequences that arise from the use of a modifed lagrangean for the eletromagnetic feld in two diferent contexts: a spatially homogeneous and isotropic universe whose dynamics is driven by a magnetic feld plus a cosmological parameter A, and the problem of a static and charged point mass (charged black hole). In the cosmological case, three diferent general solutions were derived. The first, with a null cosmological parameter A, generalizes a particular solution obtained by Novello et al [gr-qc/9806076]. The second one admits a constant A and the third one allows A to be a time-dependent parameter that sustains a constant magnetic feld. The first two solutions are non-singular and exhibit in ationary periods. The third case studied shows an in ationary dynamics except for a short period of time. As for the problem of a charged point mass, the solutions of the Einstein-Maxwell equations are obtained and compared with the standard Reissner-Nordstrom solution. Contrary to what happens in the cosmological case, the physical singularity is not removed
Resumo:
Significant observational effort has been directed to unveiling the nature of the so-called dark energy. However, given the large number of theoretical possibilities, it is possible that this a task cannot be based only on observational data. In this thesis we investigate the dark energy via a thermodynamics approach, i.e., we discuss some thermodynamic properties of this energy component assuming a general time-dependent equation-of-state (EoS) parameter w(a) = w0 + waf(a), where w0 and wa are constants and f(a) may assume different forms. We show that very restrictive bounds can be placed on the w0 - wa space when current observational data are combined with the thermodynamic constraints derived. Moreover, we include a non-zero chemical potential μ and a varying EoS parameter of the type ω(a) = ω0 + F(a), therefore more general, in this thermodynamical description. We derive generalized expressions for the entropy density and chemical potential, noting that the dark energy temperature T and μ evolve in the same way in the course of the cosmic expansion. The positiveness of entropy S is used to impose thermodynamic bounds on the EoS parameter ω(a). In particular, we find that a phantom-like behavior ω(a) < −1 is allowed only when the chemical potential is a negative quantity (μ < 0). Thermodynamically speaking, a complete treatment has been proposed, when we address the interaction between matter and energy dark
Resumo:
We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time