31 resultados para Ti-MCM-41 catalyst


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, was used a very promising technique called of pyrolysis, which can be used for obtaining products with higher added value. From oils and residues, since the contribution of heavier oils and residues has intensified to the world refining industry, due to the growing demand for fuel, for example, liquid hydrocarbons in the range of gasoline and diesel. The catalytic pyrolysis of vacuum residues was performed with the use of a mesoporous material belonging the M41S family, which was discovered in the early 90s by researchers Mobil Oil Corporation, allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal arrangement of mesopores with pore diameters between 2 and 10 nm and a high specific surface area, making it very promising for use as a catalyst in petroleum refining for catalytic cracking, and their mesopores facilitate the access of large hydrocarbon molecules. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more positive for application in the petrochemical industry. The mesoporous material of the type Al-MCM41 (ratio Si / Al = 50) was synthesized by hydrothermal method starting from the silica gel, NaOH and distilled water added to the gel pseudobohemita synthesis. Driver was used as structural CTMABr. Removal of organic driver (CTMABr) was observed by TG / DTG and FTIR, but this material was characterized by XRD, which was observed the formation of the main peaks characteristic of mesoporous materials. The analysis of adsorption / desorption of nitrogen this material textural parameters were determined. The vacuum residues (VR's) that are products of the bottom of the vacuum distillation tower used in this study are different from oil fields (regions of Ceará and Rio de Janeiro). Previously characterized by various techniques such as FTIR, viscosity, density, SARA, elemental analysis and thermogravimetry, which was performed by thermal and catalytic degradation of vacuum residues. The effect of AlMCM-41 was satisfactory, since promoted a decrease in certain ranges of temperature required in the process of conversion of hydrocarbons, but also promoted a decrease in energy required in the process. Thus enabling lower costs related to energy expenditure from degradation during processing of the waste

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalyst of great interest to the scientific community tries to unite the structure of ordered pore diameter from mesoporous materials with the properties of stability and acid activity to microporous zeolites. Thus a large number of materials was developed in the past decades, which although being reported as zeolites intrinsically they fail to comply with some relevant characteristics to zeolites, and recently were named zeolitic materials of high accessibility. Among the various synthesis strategies employed, the present research approaches the synthesis methods of crystallization of silanized protozeolitic units and the method of protozeolitic units molded around surfactant micelles, in order for get materials defined as hierarchical zeolites and micro-mesoporous hybrid materials, respectively. As goal BEA/MCM-41 hybrid catalysts with bimodal pore structure formed by nuclei of zeolite Beta and cationic surfactant cetyltrimethylammonium were developed. As also was successfully synthesized the hierarchical Beta zeolite having a secondary porosity, in addition to the typical and uniform zeolite micropores. Both catalysts were applied in reactions of catalytic cracking of high density polyethylene (HDPE), to evaluate its properties in catalytic activity, aiming at the recycling of waste plastics to obtain high value-added raw materials and fuels. The BEA/MCM-41 hybrid materials with 0 days of pre-crystallization did not show enough properties for use in catalytic cracking reactions, but they showed superior catalytic properties compared to those ordered mesoporous materials of Al-MCM-41 type. The structure of Beta zeolite with hierarchical porosity leads the accessibility of HDPE bulky molecules to active centers, due to high external area. And provides higher conversion to hydrocarbons in the gasoline range, especially olefins which have great interest in the petrochemical industry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, was used a very promising technique called of pyrolysis, which can be used for obtaining products with higher added value. From oils and residues, since the contribution of heavier oils and residues has intensified to the world refining industry, due to the growing demand for fuel, for example, liquid hydrocarbons in the range of gasoline and diesel. The catalytic pyrolysis of vacuum residues was performed with the use of a mesoporous material belonging the M41S family, which was discovered in the early 90s by researchers Mobil Oil Corporation, allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal arrangement of mesopores with pore diameters between 2 and 10 nm and a high specific surface area, making it very promising for use as a catalyst in petroleum refining for catalytic cracking, and their mesopores facilitate the access of large hydrocarbon molecules. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more positive for application in the petrochemical industry. The mesoporous material of the type Al-MCM41 (ratio Si / Al = 50) was synthesized by hydrothermal method starting from the silica gel, NaOH and distilled water added to the gel pseudobohemita synthesis. Driver was used as structural CTMABr. Removal of organic driver (CTMABr) was observed by TG / DTG and FTIR, but this material was characterized by XRD, which was observed the formation of the main peaks characteristic of mesoporous materials. The analysis of adsorption / desorption of nitrogen this material textural parameters were determined. The vacuum residues (VR's) that are products of the bottom of the vacuum distillation tower used in this study are different from oil fields (regions of Ceará and Rio de Janeiro). Previously characterized by various techniques such as FTIR, viscosity, density, SARA, elemental analysis and thermogravimetry, which was performed by thermal and catalytic degradation of vacuum residues. The effect of AlMCM-41 was satisfactory, since promoted a decrease in certain ranges of temperature required in the process of conversion of hydrocarbons, but also promoted a decrease in energy required in the process. Thus enabling lower costs related to energy expenditure from degradation during processing of the waste

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MCM-41 mesoporous synthesis was done using rice hulls ash and chrysotile as natural alternative silica sources. For the using of these sources, chemical and thermic treatments were done in both materials. After chemical and thermic treatments, these materials were employed on the MCM-41 mesoctructures synthesis. The natural materials treated and employed in the synthesis were characterized by several techniques such as X-ray diffraction, N2 adsorption and desorption, scanning electronic microscopy and thermogravimetric analysis. MCM-41 standart samples synthetized with aerosil 200 commercial sílica were used to evaluation. The formed material from rice hulls ash showed values from BET specific area about 468 m².g-1, N2 adsorption and desorption isotherms and loss mass similar to reference materials. The silica from chrysotile calcined and leached was employed to mesoporous materials synthesis. The BET specific area showed values about 700 m².g-1, N2 adsorption and desorption isotherms type IV and loss mass similar to mesoporous materials. The formed material from calcined and leached chrysotile, without calcination, applied to phenol remotion carried high performance liquid chromatography and evaluated with organophilic clays with different treatments. By the characterization techniques were proved that mesoporous materials with lesser order that reference samples. The material formed from rice hulls ash without the calcination step achieved better adsorption results than organophilic clays

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen carriers are metal oxides which have the ability to oxidize and reduce easily by various cycles. Due to this property these materials are widely usedin Chemical-Looping Reforming processes to produce H2 and syngas. In this work supports based on MCM-41 and La-SiO2 were synthesized by hydrothermal method. After the synthesis step they were calcined at 550°C for 2 hours and characterized by TG, XRD, surface area using the BET method and FTIR spectroscopy. The deposition of active phase, in this case Nickel, took place in the proportions of 5, 10 and 20% by weight of metallic nickel, for use as oxygen carriers.The XRD showed that increasing in the content of Ni supported on MCM-41 resulted in a decrease in spatial structure and lattice parameter of the material. The adsorption and desorption curves of the MCM-41 samples exhibited variations with the increase of Ni deposited. Surface area, average pore diameter and wall density of silica showed significant changes , due to the increase of the active phase on the mesoporous material. By other hand, in the samples with La-SiO2 composition was not observed peaks characteristic of hexagonal structure, in the XRD diffractogram. The adsorption/desorption isotherms of nitrogen observed are type IV, characteristic of mesoporous materials. The catalytic test indicates that the supports have no influence in the process, but the nickel concentration is very important, because the results for minor concentration of nickel are not good. The ratio H2/O2 was close to 2, for all 15 cycles involving the test storage capacity of O2, indicating that the materials are effective for oxygen transport

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MCM-41 mesoporous synthesis was done using rice hulls ash and chrysotile as natural alternative silica sources. For the using of these sources, chemical and thermic treatments were done in both materials. After chemical and thermic treatments, these materials were employed on the MCM-41 mesoctructures synthesis. The natural materials treated and employed in the synthesis were characterized by several techniques such as X-ray diffraction, N2 adsorption and desorption, scanning electronic microscopy and thermogravimetric analysis. MCM-41 standart samples synthetized with aerosil 200 commercial sílica were used to evaluation. The formed material from rice hulls ash showed values from BET specific area about 468 m².g-1, N2 adsorption and desorption isotherms and loss mass similar to reference materials. The silica from chrysotile calcined and leached was employed to mesoporous materials synthesis. The BET specific area showed values about 700 m².g-1, N2 adsorption and desorption isotherms type IV and loss mass similar to mesoporous materials. The formed material from calcined and leached chrysotile, without calcination, applied to phenol remotion carried high performance liquid chromatography and evaluated with organophilic clays with different treatments. By the characterization techniques were proved that mesoporous materials with lesser order that reference samples. The material formed from rice hulls ash without the calcination step achieved better adsorption results than organophilic clays