31 resultados para Testes genéricos a uma aplicação
Resumo:
Oxygen carriers are metal oxides which have the ability to oxidize and reduce easily by various cycles. Due to this property these materials are widely usedin Chemical-Looping Reforming processes to produce H2 and syngas. In this work supports based on MCM-41 and La-SiO2 were synthesized by hydrothermal method. After the synthesis step they were calcined at 550°C for 2 hours and characterized by TG, XRD, surface area using the BET method and FTIR spectroscopy. The deposition of active phase, in this case Nickel, took place in the proportions of 5, 10 and 20% by weight of metallic nickel, for use as oxygen carriers.The XRD showed that increasing in the content of Ni supported on MCM-41 resulted in a decrease in spatial structure and lattice parameter of the material. The adsorption and desorption curves of the MCM-41 samples exhibited variations with the increase of Ni deposited. Surface area, average pore diameter and wall density of silica showed significant changes , due to the increase of the active phase on the mesoporous material. By other hand, in the samples with La-SiO2 composition was not observed peaks characteristic of hexagonal structure, in the XRD diffractogram. The adsorption/desorption isotherms of nitrogen observed are type IV, characteristic of mesoporous materials. The catalytic test indicates that the supports have no influence in the process, but the nickel concentration is very important, because the results for minor concentration of nickel are not good. The ratio H2/O2 was close to 2, for all 15 cycles involving the test storage capacity of O2, indicating that the materials are effective for oxygen transport
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
Through the adoption of the software product line (SPL) approach, several benefits are achieved when compared to the conventional development processes that are based on creating a single software system at a time. The process of developing a SPL differs from traditional software construction, since it has two essential phases: the domain engineering - when common and variables elements of the SPL are defined and implemented; and the application engineering - when one or more applications (specific products) are derived from the reuse of artifacts created in the domain engineering. The test activity is also fundamental and aims to detect defects in the artifacts produced in SPL development. However, the characteristics of an SPL bring new challenges to this activity that must be considered. Several approaches have been recently proposed for the testing process of product lines, but they have been shown limited and have only provided general guidelines. In addition, there is also a lack of tools to support the variability management and customization of automated case tests for SPLs. In this context, this dissertation has the goal of proposing a systematic approach to software product line testing. The approach offers: (i) automated SPL test strategies to be applied in the domain and application engineering, (ii) explicit guidelines to support the implementation and reuse of automated test cases at the unit, integration and system levels in domain and application engineering; and (iii) tooling support for automating the variability management and customization of test cases. The approach is evaluated through its application in a software product line for web systems. The results of this work have shown that the proposed approach can help the developers to deal with the challenges imposed by the characteristics of SPLs during the testing process
Resumo:
A automação consiste em uma importante atividade do processo de teste e é capaz de reduzir significativamente o tempo e custo do desenvolvimento. Algumas ferramentas tem sido propostas para automatizar a realização de testes de aceitação em aplicações Web. Contudo, grande parte delas apresenta limitações importantes tais como necessidade de valoração manual dos casos de testes, refatoração do código gerado e forte dependência com a estrutura das páginas HTML. Neste trabalho, apresentamos uma linguagem de especificação de teste e uma ferramenta concebidas para minimizar os impactos propiciados por essas limitações. A linguagem proposta dá suporte aos critérios de classes de equivalência e a ferramenta, desenvolvida sob a forma de um plug-in para a plataforma Eclipse, permite a geração de casos de teste através de diferentes estratégias de combinação. Para realizar a avaliação da abordagem, utilizamos um dos módulos do Sistema Unificado de Administração Publica (SUAP) do Instituto Federal do Rio Grande do Norte (IFRN). Participaram da avaliação analistas de sistemas e um técnico de informática que atuam como desenvolvedores do sistema utilizado.
Resumo:
Automation has become increasingly necessary during the software test process due to the high cost and time associated with such activity. Some tools have been proposed to automate the execution of Acceptance Tests in Web applications. However, many of them have important limitations such as the strong dependence on the structure of the HTML pages and the need of manual valuing of the test cases. In this work, we present a language for specifying acceptance test scenarios for Web applications called IFL4TCG and a tool that allows the generation of test cases from these scenarios. The proposed language supports the criterion of Equivalence Classes Partition and the tool allows the generation of test cases that meet different combination strategies (i.e., Each-Choice, Base-Choice and All Combinations). In order to evaluate the effectiveness of the proposed solution, we used the language and the associated tool for designing and executing Acceptance Tests on a module of Sistema Unificado de Administração Pública (SUAP) of Instituto Federal Rio Grande do Norte (IFRN). Four Systems Analysts and one Computer Technician, which work as developers of the that system, participated in the evaluation. Preliminary results showed that IFL4TCG can actually help to detect defects in Web applications
Uma abordagem para a verificação do comportamento excepcional a partir de regras de designe e testes
Resumo:
Checking the conformity between implementation and design rules in a system is an important activity to try to ensure that no degradation occurs between architectural patterns defined for the system and what is actually implemented in the source code. Especially in the case of systems which require a high level of reliability is important to define specific design rules for exceptional behavior. Such rules describe how exceptions should flow through the system by defining what elements are responsible for catching exceptions thrown by other system elements. However, current approaches to automatically check design rules do not provide suitable mechanisms to define and verify design rules related to the exception handling policy of applications. This paper proposes a practical approach to preserve the exceptional behavior of an application or family of applications, based on the definition and runtime automatic checking of design rules for exception handling of systems developed in Java or AspectJ. To support this approach was developed, in the context of this work, a tool called VITTAE (Verification and Information Tool to Analyze Exceptions) that extends the JUnit framework and allows automating test activities to exceptional design rules. We conducted a case study with the primary objective of evaluating the effectiveness of the proposed approach on a software product line. Besides this, an experiment was conducted that aimed to realize a comparative analysis between the proposed approach and an approach based on a tool called JUnitE, which also proposes to test the exception handling code using JUnit tests. The results showed how the exception handling design rules evolve along different versions of a system and that VITTAE can aid in the detection of defects in exception handling code
Resumo:
Survival models deals with the modeling of time to event data. However in some situations part of the population may be no longer subject to the event. Models that take this fact into account are called cure rate models. There are few studies about hypothesis tests in cure rate models. Recently a new test statistic, the gradient statistic, has been proposed. It shares the same asymptotic properties with the classic large sample tests, the likelihood ratio, score and Wald tests. Some simulation studies have been carried out to explore the behavior of the gradient statistic in fi nite samples and compare it with the classic statistics in diff erent models. The main objective of this work is to study and compare the performance of gradient test and likelihood ratio test in cure rate models. We first describe the models and present the main asymptotic properties of the tests. We perform a simulation study based on the promotion time model with Weibull distribution to assess the performance of the tests in finite samples. An application is presented to illustrate the studied concepts
Resumo:
Because the penetration depth of Ground Penetrating Radar (GPR) signals is very limited in high conductive soils, the usefullness of this method in tropical regions is not yet completly known. The main objective of this researh is to test the usefullness of the method in Brazil. Two typical problems where GPR has been used in Europe and North American were choosed for this test: the first one is to characterize the internal structures of a sand body and the second problem is the localization of old buried pipes lines. The first test was done near the city of São Bento do Norte, in the northern coast of Rio Grande do Norte state, NE Brazil. In this region, there is a sand dune that is migrating very fast in the direction of adjacent settling areas. To characterize the internal structure of the dune and its relationship to the prevailing wind direction, as a preliminary step to understand the dune migration, GPR profiles using the 400 MHz frequency were performed in E-W, N-S, NE-SW, and SE-NW directions over the sand dune intersecting at the top of the dune. The practical resolution of the GPR data is around 30 cm; this was sufficient to distinguish individual foresets inside the dune. After applying the elevation correction to the data, we identified that dips of bedding structures are smallest for the N-S profile, which is perpendicular to the dominant wind direction, largest for the E-W profile, and intermediate for the SW-NE and SE-NW profiles. Foresets in the E-W profile dip with angles varying from 2 to 6 degrees. In the E-W profile, the water table and a horizontal truncation interface separating two generations of dunes were identified, as well as an abrupt directional change in the foreset patterns associated to a lateral contact between two dune generations, the older one extending to the west. The used high frequency of 400 Mhz does not allow a penetration deep enough to map completely these internal contacts. The second test was done near Estreito, a small town near Carnaúbais city, also in Rio Grande do Norte state. In this locality, there are several old pipe lines buried in area covered by plantations where digging should be minimized. Several GPR profiles using the 400 and 200 MHz frequency were performed trying to intercept perpendicularly the possible pipe lines. Because of the high conductivity of the soil, the raw original data can hardly be use to identify the pipe lines. However, after an adequate processing over the 200 MHz profiles, six pipe lines were identified. As a global result of the tests, GPR can be very usefull if the conductivity of the ground is low or, in the case of medium conductivities of the soils, if adequate processing is performed
Resumo:
During the drilling of oil and natural gas are generated solid waste, liquid and gaseous. These solid fragments, which are known as cuttings, are carried to the surface through the drilling fluid. Furthermore, this fluid serves to cool the bit, keeping the internal pressure of the well, and others. This solid residue is very polluting, because it has incorporated beyond the drilling fluid, which has several chemical additives harmful to the environment, some heavy metals that are harmful to the environment, such as lead. To minimize the residue generated, are currently being studied numerous techniques to mitigate the problems that such waste can cause to the environment, like addition of cuttings in the composition of soil cement brick masonry construction, addition of cuttings on the clay matrix for the manufacture of solid masonry bricks and ceramic blocks and coprocessing of the cuttings in cement. So, the main objective of this work is the incorporation of cuttings drilling of oil wells, the cement slurry used in the cementing operation of the well. This cuttings used in this study, arising from the formation Pendências, was milled and separated in a sieve of 100 mesh. After grinding had a mean particle sike in order of 86 mm and crystal structure containing phases of quartz and calcite type, characteristic of the Portland cement. Were formulated and prepared slurries of cement with density 13 lb / gal, containing different concentrations of gravel, and realized characterization tests API SPEC 10A and RP 10B. Free water tests showed values lower than 5.9% and the rheological model that best described the behavior of the mixtures was the power. The results of compressive strength (10.3 MPa) and stability (Dr <0.5 lb / gal) had values within the set of operational procedures. Thus, the gravel from the drilling operation, may be used as binders in addition to Portland cement oil wells, in order to reuse this waste and reduce the cost of the cement paste.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
This study aimed to build a virtual learning environment for application of the nursing process based on the NANDA-I, NOC, NIC and ICNP® . Faced with problems related to learning of the nursing process and classifications, there is an urgent need to develop innovative teaching resources that modify the relationship between students and teachers. The methodology was based on the steps inception, development, construction and transition, and the software development process Rational Process Unifield. The team involved in the development of this environment was composed by researchers and students of The Care and Epidemiological Practice in Health and Nursing and Group of the Software Engineering curse of the Federal University Rio Grande do Norte, with the participation of the Lisbon and Porto Schools of Nursing, in Portugal. In the inception stage the inter research communication was in order to define the functions, features and tools for the construction process. In the preparation, step the planning and modeling occurred, which resulted in the creation of a diagram and a architectural drawings that specify the features and functionality of the software. The development, unit testing and integrated in interfaces of the modules and areas (administrator, teacher, student, and construction of the NP). Then the transition step was performed, which showed complete and functioning system, as well as the training and use by researchers with its use in practice. In conclusion, this study allowed for the planning and the construction of an educational technology, and it is expected that its implementation will trigger a substantial change in the learning of the nursing process and classifications, with the student being active agent of the learning process. Later, an assessment will be made of functional performance, which will enable the software development, with a feedback, correction of defects and necessary changes. It is believed that the software increment after the reviews, this tool grow further and help insert this methodology and every language under the educational and health institutions, promoting paradigmatic desired change by nursing.
Resumo:
This work describes the synthesis and study of the application of a new surfactant (Triester Lipophilic – TEL) obtained by citric acid with octanol. It is reaction was followed by thin layer chromatography (TLC) and after purification the product was characterized by proton and 13 – carbon nuclear magnetic resonance spectroscopy ( H and 13C NMR), thermogravimetric analysis (TGA) and surface tension analysis of oil-in-water emulsions. The TEL performance as surfactant in ester, n-paraffin and biodiesel based drilling fluids on the 70/30 and 60/40 water- oil rations (WOR) was evaluated by comparative tests of two commercial products used in the fields. These drilling fluids were aged in roller oven at 200 0 F during 16 h. The rheological and electric stability measurements were carried out at 135 ºF, the phase separation was evaluated after seven days at rest and the filtrate volume of drilling fluids was determined at high temperature and high pressure. The rheological behavior of the drilling fluids was evaluated by the flow curves. The results showed that the drilling fluids studied here presented Binghamian behavior as well as the used in the oil fields. The laboratory tests showed that the TEL reduced the filtrate volume and promoted the enhance of the thermal and mechanical stabilities.
Resumo:
This work aims to study and investigate the use of a hybrid composite polymer formed with blanket aramid (Kevlar 29) fiber blanket flax fiber and particulate dry endocarp of coconut (Cocos nucifera Linn), using as matrix an epoxy resin based thermoset for use in areas of protective equipment. Besides such material is used an aluminum plate, joined to the composite by means of glue based on epoxy and araldite commercial. The manufacturing process adopted was manual lamination (Hand Lay Up) to manufacture the hybrid composite. After the composite is prepared, an aluminum plate is subjected to pressure and glued to cure the adhesive. Layers of veil will also be used to separate the particulate from the linen blanket layer without disturbing the alignment of the fibers of the blankets. To characterize the mechanical and physical behavior was manufactured a plate of 800 x 600 mm of the hybrid composite, which were removed specimens for tests of water absorption to saturation; density; impact test (Charpy) and two test specimens for ballistic testing 220 mm x 200 mm to make a comparative study between the dry state and saturated water absorption and thus see the ballistic performance of these two conditions. The test was applied to make a comparative study of fracture in these two conditions, caused by penetrating ballistic missile (38 and 380). To test the impact (Charpy) will analyze the absorbed energy, fracture appearance and lateral contraction, also in dry condition and saturation of absorbed water, thereby analyzing situations where the impact load is relevant, such as bumps and shocks produced by stone, metal or wooden bars among others. The proposed configuration, along with the tests, has the purpose, application in the fields of equipment against ballistic impact, such as helmets; bullet proof vests; shields; protective packaging and other items to be identified in this research.
Resumo:
Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.
Resumo:
Biodiesel is a fuel obtained from vegetable oils, such as soy, castorbean, among others. The monoester of fatty acid of these oils have chains with mono, di and tri double connections. The presence of these insaturations are susceptible to oxidization. Antioxidants are substances able to prevent oxidization from oils, fats, fat foods, as well as esters of Alquila( biodiesel). The objective of this work is to summarize a new antioxidant from the Cashew Nut Shell Liquid (CNSL) using the electrolysis technique. A current of 2 amperes was used in a single cell of only one group and two eletrodos of stainless steel 304 in a solution of methanol, together with the eletrolits: acetic acid, sodium chloride and sodium hydroxide, for two hours of agitation. The electrolysis products are characterized by the techniques of cromatography in a thin layer, spectroscopy of infrared and gravimetric analysis. The material was submitted to tests of oxidative stability made by the techniques of spectropy of impendancy and Rancimat (EN 14112). The analyses of characterization suggest that the polimerization of the electrolytic material ocurred. The application results of these materials as antioxidants of soy biodiesel showed that the order of the oxidative stability was obtained by both techniques used