58 resultados para Split tensile strength


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geopolymers are cementing materials that depict a number of advantages compared to Portland cement. Contrary to the latter, geopolymers are synthesized at room temperature, thus significantly reducing the emission of CO2 to the atmosphere. Moreover, the composition and synthesis reactions can be tailored to adjust the setting time of the material as well as its compressive mechanical strength. It is then possible to produce geopolymeric cements with short setting times and high compressive strength, although relatively brittle. The objective of the present study was to produce and characterize composite materials by reinforcing fastsetting geopolymeric matrixes with polypropylene geosynthetics (geomats and geotextiles) in an attempt to improve the toughness and tensile strength of the cementing material. Geosynthetics have been increasingly used to reinforce engineering structures, providing higher strength and better toughness. In particular, polypropylene nonwoven and geomats depict other attractive properties such as low density, durability, impact absorption and resistance to abrasion. Fast-setting geopolymers were then synthesized and reinforced with polypropylene nonwoven and geomats. The mechanical strength of the materials, reinforced or not, was characterized. The results showed that relatively short setting times and adequate flowing behavior were achieved by adjusting the composition of the geopolymer. In addition, it is possible to improve the fracture resistance of geopolymeric cements by adding polypropylene geosynthetics. The best results were achieved by reinforcing geopolymer with polypropylene TNT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sector of civil construction is strongly related to the red ceramic industry. This sector uses clay as raw material for manufacturing of various products such as ceramic plates. In this study, two types of clay called clay 1 and clay 2 were collected on deposit in Ielmo Marinho city (RN) and then characterized by thermogravimetric analysis (TG/DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), rational analysis and particle size distribution and dilatometric analyses. Ceramic plates were manufactured by uniaxial pressing and by extrusion. The plates obtained by pressing were produced from the four formulations called 1, 2, 3 and 4, which presented, respectively, the following proportions by mass: 66.5% clay 1 and 33.5% clay 2, 50% clay 1 and 50% clay 2, 33.5% clay 1 and 66.5% clay 2, 25% clay 1 and 75% clay 2. After firing at 850, 950 and 1050 °C with heating rate of 10 °C/min and soaking time of 30 minutes, the following technological properties were determined: linear firing shrinkage, water absorption, apparent porosity, apparent specific mass and tensile strength (3 points). The formulation containing 25% clay 1 produced plates with most satisfactory results of water absorption and mechanical resistance, because of that it was chosen for manufacturing plates by extrusion. A single firing cycle was established for these plates, which took place as follow: heating rate of 2 °C/min up to 600 ºC with soaking time of 60 minutes, followed by heating using the same rate up to 1050 ºC with soaking time of 30 minutes. After this cycle, the same technological properties investigated in the plates obtained by pressing were determined. The results indicate (according to NRB 13818/1997) that the plates obtained by pressing from the mixture containing 25 wt% clay 1, after firing at 1050 °C, reach the specifications for semi-porous coating (BIIb). On the other hand, the plates obtained by extrusion were classified as semi-stoneware (group AIIa)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite materials have a wide application in various sectors, such as the medical field in the manufacture of prostheses, in automotive and aerospace. Thus it is essential to the development of new composite and a better understanding in the face of various loading conditions and service. Several structural elements are manufactured in the presence of geometric discontinuity (notch, hole, etc ) in their longitudinal sections and/or cross-cutting, and these affect the mechanical response of these elements. The objective is to study the mechanical response of laminated polymer matrix hybrid composites reinforced with glass fiber/jute in a uniaxial tensile test. The mechanical response takes in account both the influence of the presence of a geometric discontinuity (semicircular notches) and the orientation of fibers in the layers (anisotropy). The semicircular notches are located in longitudinal section (with a reduction in cross section) of the same. In this analysis, the anisotropy is characterized by types of configurations (with different orientations of fibers in the outer layers). A comparative study of mechanical properties with and without the presence of notches is developed. Both configurations consist of four layers of woven jute fiber bidirectional and a central layer of bidirectional woven glass fibers. In addition to the mechanical properties was also studied the characteristics of the fracture developed in each composite laminate. The results showed that in the comparative study, the anisotropy and the presence of semicircular notches directly influences the mechanical behavior of laminates composites, mainly in reducing the tensile strength, and well as the final characteristics of the fracture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results