37 resultados para Redes locais sem fio


Relevância:

40.00% 40.00%

Publicador:

Resumo:

On the last years, several middleware platforms for Wireless Sensor Networks (WSN) were proposed. Most of these platforms does not consider issues of how integrate components from generic middleware architectures. Many requirements need to be considered in a middleware design for WSN and the design, in this case, it is possibility to modify the source code of the middleware without changing the external behavior of the middleware. Thus, it is desired that there is a middleware generic architecture that is able to offer an optimal configuration according to the requirements of the application. The adoption of middleware based in component model consists of a promising approach because it allows a better abstraction, low coupling, modularization and management features built-in middleware. Another problem present in current middleware consists of treatment of interoperability with external networks to sensor networks, such as Web. Most current middleware lacks the functionality to access the data provided by the WSN via the World Wide Web in order to treat these data as Web resources, and they can be accessed through protocols already adopted the World Wide Web. Thus, this work presents the Midgard, a component-based middleware specifically designed for WSNs, which adopts the architectural patterns microkernel and REST. The microkernel architectural complements the component model, since microkernel can be understood as a component that encapsulates the core system and it is responsible for initializing the core services only when needed, as well as remove them when are no more needed. Already REST defines a standardized way of communication between different applications based on standards adopted by the Web and enables him to treat WSN data as web resources, allowing them to be accessed through protocol already adopted in the World Wide Web. The main goals of Midgard are: (i) to provide easy Web access to data generated by WSN, exposing such data as Web resources, following the principles of Web of Things paradigm and (ii) to provide WSN application developer with capabilities to instantiate only specific services required by the application, thus generating a customized middleware and saving node resources. The Midgard allows use the WSN as Web resources and still provide a cohesive and weakly coupled software architecture, addressing interoperability and customization. In addition, Midgard provides two services needed for most WSN applications: (i) configuration and (ii) inspection and adaptation services. New services can be implemented by others and easily incorporated into the middleware, because of its flexible and extensible architecture. According to the assessment, the Midgard provides interoperability between the WSN and external networks, such as web, as well as between different applications within a single WSN. In addition, we assessed the memory consumption, the application image size, the size of messages exchanged in the network, and response time, overhead and scalability on Midgard. During the evaluation, the Midgard proved satisfies their goals and shown to be scalable without consuming resources prohibitively

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field of Wireless Sensor and Actuator Networks (WSAN) is fast increasing and has attracted the interest of both the research community and the industry because of several factors, such as the applicability of such networks in different application domains (aviation, civil engineering, medicine, and others). Moreover, advances in wireless communication and the reduction of hardware components size also contributed for a fast spread of these networks. However, there are still several challenges and open issues that need to be tackled in order to achieve the full potential of WSAN usage. The development of WSAN systems is one of the most relevant of these challenges considering the number of variables involved in this process. Currently, a broad range of WSAN platforms and low level programming languages are available to build WSAN systems. Thus, developers need to deal with details of different sensor platforms and low-level programming abstractions of sensor operational systems on one hand, and they also need to have specific (high level) knowledge about the distinct application domains, on the other hand. Therefore, in order to decouple the handling of these two different levels of knowledge, making easier the development process of WSAN systems, we propose LWiSSy (Domain Language for Wireless Sensor and Actuator Networks Systems), a domain specific language (DSL) for WSAN. The use of DSLs raises the abstraction level during the programming of systems and modularizes the system building in several steps. Thus, LWiSSy allows the domain experts to directly contribute in the development of WSANs without having knowledge on low level sensor platforms, and network experts to program sensor nodes to meet application requirements without having specific knowledge on the application domain. Additionally, LWiSSy enables the system decomposition in different levels of abstraction according to structural and behavioral features and granularities (network, node group and single node level programming)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Wireless Mesh Network (WMN - Wireless Mesh Network) IEEE 802.11s standard to become operational it is necessary to configure the parameters that meet the demands of its users, as regards, for example, the frequency channels, the power antennas, IPs addresses, meshID, topology, among others. This configuration can be done via a CLI (Command - Line Interface) or a remote interface provided by the equipment manufacturer, both are not standardized and homogeneous, like black boxes for the developers, a factor that hinders its operation and standardization. The WMN, as a new standard, is still in the testing phase, and tests are necessary to evaluate the performance of Path Discovery Protocol, as in this case of HWMP (Hybrid Wireless Mesh Protocol), which still has many shortcomings. The configuration and test creation in a WMN are not trivial and require a large workload. For these reasons this work presents the AIGA, a Management Integrated Environment for WMN IEEE 802.11s, which aims to manage and perform testbeds for analyzes of new Path Discovery Protocols in a WMN

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aims at modeling power consumption at the nodes of a Wireless Sensor Network (WSN). For doing so, a finite state machine was implemented by means of SystemC-AMS and Stateflow modeling and simulation tools. In order to achieve this goal, communication data in a WSN were collected. Based on the collected data, a simulation environment for power consumption characterization, which aimed at describing the network operation, was developed. Other than performing power consumption simulation, this environment also takes into account a discharging model as to analyze the battery charge level at any given moment. Such analysis result in a graph illustrating the battery voltage variations as well as its state of charge (SOC). Finally, a case study of the WSN power consumption aims to analyze the acquisition mode and network data communication. With this analysis, it is possible make adjustments in node-sensors to reduce the total power consumption of the network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing demand for Internet data traffic in wireless broadband access networks requires both the development of efficient, novel wireless broadband access technologies and the allocation of new spectrum bands for that purpose. The introduction of a great number of small cells in cellular networks allied to the complimentary adoption of Wireless Local Area Network (WLAN) technologies in unlicensed spectrum is one of the most promising concepts to attend this demand. One alternative is the aggregation of Industrial, Science and Medical (ISM) unlicensed spectrum to licensed bands, using wireless networks defined by Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP). While IEEE 802.11 (Wi-Fi) networks are aggregated to Long Term Evolution (LTE) small cells via LTE / WLAN Aggregation (LWA), in proposals like Unlicensed LTE (LTE-U) and LWA the LTE air interface itself is used for transmission on the unlicensed band. Wi-Fi technology is widespread and operates in the same 5 GHz ISM spectrum bands as the LTE proposals, which may bring performance decrease due to the coexistence of both technologies in the same spectrum bands. Besides, there is the need to improve Wi-Fi operation to support scenarios with a large number of neighbor Overlapping Basic Subscriber Set (OBSS) networks, with a large number of Wi-Fi nodes (i.e. dense deployments). It is long known that the overall Wi-Fi performance falls sharply with the increase of Wi-Fi nodes sharing the channel, therefore there is the need for introducing mechanisms to increase its spectral efficiency. This work is dedicated to the study of coexistence between different wireless broadband access systems operating in the same unlicensed spectrum bands, and how to solve the coexistence problems via distributed coordination mechanisms. The problem of coexistence between different networks (i.e. LTE and Wi-Fi) and the problem of coexistence between different networks of the same technology (i.e. multiple Wi-Fi OBSSs) is analyzed both qualitatively and quantitatively via system-level simulations, and the main issues to be faced are identified from these results. From that, distributed coordination mechanisms are proposed and evaluated via system-level simulations, both for the inter-technology coexistence problem and intra-technology coexistence problem. Results indicate that the proposed solutions provide significant gains when compare to the situation without distributed coordination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greater part of monitoring onshore Oil and Gas environment currently are based on wireless solutions. However, these solutions have a technological configuration that are out-of-date, mainly because analog radios and inefficient communication topologies are used. On the other hand, solutions based in digital radios can provide more efficient solutions related to energy consumption, security and fault tolerance. Thus, this paper evaluated if the Wireless Sensor Network, communication technology based on digital radios, are adequate to monitoring Oil and Gas onshore wells. Percent of packets transmitted with successful, energy consumption, communication delay and routing techniques applied to a mesh topology will be used as metrics to validate the proposal in the different routing techniques through network simulation tool NS-2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring of patients performed in hospitals is usually done either in a manual or semiautomated way, where the members of the healthcare team must constantly visit the patients to ascertain the health condition in which they are. The adoption of this procedure, however, compromises the quality of the monitoring conducted since the shortage of physical and human resources in hospitals tends to overwhelm members of the healthcare team, preventing them from moving to patients with adequate frequency. Given this, many existing works in the literature specify alternatives aimed at improving this monitoring through the use of wireless networks. In these works, the network is only intended for data traffic generated by medical sensors and there is no possibility of it being allocated for the transmission of data from applications present in existing user stations in the hospital. However, in the case of hospital automation environments, this aspect is a negative point, considering that the data generated in such applications can be directly related to the patient monitoring conducted. Thus, this thesis defines Wi-Bio as a communication protocol aimed at the establishment of IEEE 802.11 networks for patient monitoring, capable of enabling the harmonious coexistence among the traffic generated by medical sensors and user stations. The formal specification and verification of Wi-Bio were made through the design and analysis of Petri net models. Its validation was performed through simulations with the Network Simulator 2 (NS2) tool. The simulations of NS2 were designed to portray a real patient monitoring environment corresponding to a floor of the nursing wards sector of the University Hospital Onofre Lopes (HUOL), located at Natal, Rio Grande do Norte. Moreover, in order to verify the feasibility of Wi-Bio in terms of wireless networks standards prevailing in the market, the testing scenario was also simulated under a perspective in which the network elements used the HCCA access mechanism described in the IEEE 802.11e amendment. The results confirmed the validity of the designed Petri nets and showed that Wi-Bio, in addition to presenting a superior performance compared to HCCA on most items analyzed, was also able to promote efficient integration between the data generated by medical sensors and user applications on the same wireless network

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation aims to develop a software applied to a communication system for a wireless sensor network (WSN) for tracking analog and digital variables and control valve of the gas flow in artificial oil s elevation units, Plunger Lift type. The reason for this implementation is due to the fact that, in the studied plant configuration, the sensors communicate with the PLC (Programmable and Logic Controller) by the cables and pipelines, making any changes in that system, such as changing the layout of it, as well as inconveniences that arise from the nature of the site, such as the vicinity s animals presence that tend to destroy the cables for interconnection of sensors to the PLC. For software development, was used communication polling method via SMAC protocol (Simple Medium Access ControlIEEE 802.15.4 standard) in the CodeWarrior environment to which generated a firmware, loaded into the WSN s transceivers, present in the kit MC13193-EVK, (all items described above are owners of Freescale Semiconductors Inc.). The network monitoring and parameterization used in its application, was developed in LabVIEW software from National Instruments. The results were obtained through the observation of the network s behavior of sensors proposal, focusing on aspects such as: indoor and outdoor quantity of packages received and lost, general aspects of reliability in data transmission, coexistence with other types of wireless networks and power consumption under different operating conditions. The results were considered satisfactory, which showed the software efficiency in this communication system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation describes the implementation of a WirelessHART networks simulation module for the Network Simulator 3, aiming for the acceptance of both on the present context of networks research and industry. For validating the module were imeplemented tests for attenuation, packet error rate, information transfer success rate and battery duration per station

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even living in the XXI century are still some difficulties in access to broadband Internet in several Brazilian cities, due to the purchasing power of people and lack of government investment. But even with these difficulties, we seek to encourage the use of wireless technology, which is based on the IEEE 802.11b protocol - also known as Wi-Fi (Wireless Fidelity) Wireless Fidelity Communications, having wide range of commercial applications in the world market, nationally and internationally. In Brazil, this technology is in full operation in major cities and has proved attractive in relation to the access point to multipoint and point-to-point. This paper is a comparative analysis of prediction field, using models based on the prediction of propagation loss. To validate the techniques used here, the Okumura-Hata models, modified Okumura-Hata, Walfisch-Ikegami model, were applied to a wireless computer network, located in the neighborhood of Cajupiranga in the city of Melbourn, in Rio Grande do Norte . They are used for networking wireless 802.11b, using the Mobile Radio to measure signal levels, beyond the heights of the antennas and distances from the transmitter. The performance data versus distance are added to the graphs generated and compared with results obtained through calculations of propagation models