21 resultados para Problemas de rotemento, Algoritmos em colônia de formiga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great amount of data generated as the result of the automation and process supervision in industry implies in two problems: a big demand of storage in discs and the difficulty in streaming this data through a telecommunications link. The lossy data compression algorithms were born in the 90’s with the goal of solving these problems and, by consequence, industries started to use those algorithms in industrial supervision systems to compress data in real time. These algorithms were projected to eliminate redundant and undesired information in a efficient and simple way. However, those algorithms parameters must be set for each process variable, becoming impracticable to configure this parameters for each variable in case of systems that monitor thousands of them. In that context, this paper propose the algorithm Adaptive Swinging Door Trending that consists in a adaptation of the Swinging Door Trending, as this main parameters are adjusted dynamically by the analysis of the signal tendencies in real time. It’s also proposed a comparative analysis of performance in lossy data compression algorithms applied on time series process variables and dynamometer cards. The algorithms used to compare were the piecewise linear and the transforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.