20 resultados para Muscular Force
Resumo:
The aging process modifies various systems in the body, leading to changes in mobility, balance and muscle strength. This can cause a drop in the elderly, or not changing the perceived self-efficacy in preventing falls. Objective: To compare the mobility, body balance and muscle performance according to self-efficacy for falls in community-dwelling elderly. Methods: A cross-sectional comparative study with 63 older (65-80 years) community. Were evaluated for identification data and sociodemographic, cognitive screening using the Mini Mental State Examination (MMSE), effective for the fall of Falls Efficacy Scale International Brazil (FES-I-BRAZIL), Mobility through the Timed Up and Go Test , the balance Berg Balance Scale (BBS) and the Modified Clinical Test tests of Sensory Interaction on Balance (mCTSIB), tandem walk (TW) and Sit to Stand (STS) of the Balance Master® System. Finally, muscle performance by using isokinetic dynamometry. Statistical analysis was performed Student t test for comparison between groups, with p value ≤ 0.05. Results: Comparing the elderly with low-efficacy for falls with high-efficacy for falls, we found significant differences only for the variable Timed Up and Go Test (p = 0.04). With regard to data on balance tests were significant differences in the speed of oscillation firm surface eyes open modified Clinical Test of Sensory Interaction on Test of Balance (p = 0.01). Variables to isokinetic dynamometry were no significant differences in movement knee extension, as regards the variables peak torque (p = 0.04) and power (p = 0.03). Conclusion: The results suggest that, compared to older community with low-and high-efficacy for falls, we observed differences in variables related to mobility, balance and muscle function
Resumo:
The aim of this study was to investigate the immediate effects of laser therapy on neuromuscular performance in healthy subjects after a muscle fatigue. This is a clinical trial, controlled, randomized, blinded, attended by 80 volunteers of both genders, healthy, with ages between 18 to 28 years. Initially the volunteers performed an initial evaluation (EV1) using electromyography in the biceps muscle, associated with assessment in isokinetic dynamometry with 5 concentric contractions (60 °/s) for elbow flexion. The subjects were randomly allocated into 4 groups: G1 (control, n = 20), G2 (placebo, n = 20), G3 (pre-fatigue laser, n = 20), and G4 (post fatigue laser, n = 20). The muscular fatigue protocol had 30 concentric isokinetic contractions (120 °/s). We used a 808 nm laser, power of 100 mW, applied at the belly of the biceps muscle. After the speeches the volunteers performed a final evaluation (EV2). Test was applied to two-way ANOVA with post hoc Turkey, with a significance level of 5%. There was no significant difference in electromyographic evaluation. In dynamometric evaluation showed a drop in peak torque, peak torque normalized to body weight (p <0.001) and average power (p <0, 05) between the initial and final evaluations in control. Among the groups there was a significant difference between the control and the other groups in relation to peak torque (p <0.05), peak torque to body weight (p <0.001) and average power (p <0.05). Therefore, the low intensity laser therapy does not alter the immediate neuromuscular performance after fatigue
Resumo:
Asthma treatment aims to achieve and maintain the control of the disease for prolonged periods. Inspiratory muscle training (IMT) may be an alternative in the care of patients with asthma, and it is used as a complementary therapy to the pharmacological treatment. Thus, the aim of this study was to investigate the effects of a domiciliary program of IMT on the electromyographic activity of the respiratory muscles in adults with asthma. This is a clinical trial in which ten adults with asthma and ten healthy adults were randomized into two groups (control and training). The electrical activity of inspiratory muscles (sternocleidomastoid (ECM) and diaphragm) was obtained by a surface electromyography. Furthermore, we assessed lung function (spirometry), maximal inspiratory pressure - MIP - (manometer). The functional capacity was evaluated by six minute walk test. Participants were assessed before and after the IMT protocol of 6 weeks with POWERbreathe® device. The training and the control groups underwent IMT with 50% and 15 % of MIP, respectively. The sample data were analyzed using SPSS 20.0, attributing significance of 5 %. Were used t test, ANOVA one way and Pearson correlation. It was observed an increase in MIP, after IMT, in both training groups and in healthy sham group (P < 0.05), which was accompanied by a significant increase in ECM activity during MIP in healthy training group (1488 %) and in asthma training group (ATG) (1186.4%). The ATG also showed a significant increase in diaphragm activity in basal respiration (48.5%). Functional capacity increased significantly in the asthma sham group (26.5 m) and in the asthma training group (45.2 m). These findings suggest that IMT promoted clinical improvements in all groups, especially the ATG, which makes it an important complementary treatment for patients with asthma
Resumo:
Exercise-induced muscle damage mainly affects individuals who returned to physical activity after a time without practicing it or had some kind of exhaustive exercise, particularly eccentric exercise. To evaluate the effect of cryotherapy and laser therapy in response to muscle damage induced by eccentric exercise on the biceps muscle. This was a randomized clinical trial consisting of 60 female subjects. All subjects initially underwent an evaluation consisting of perimetry, measurement of pain sensation (via algometry and visual analogue scale), electromyography and dynamometry. Then the subjects performed an exercise protocol on the isokinetic dynamometer consisting of 2 sets of 10 eccentric elbow flexors contraction at 60 °/s. Completed this protocol, an intervention was held according to a previously random group distribution: control group (no intervention), cryotherapy group and laser therapy group. Finally, subjects were re-evaluated immediately and 48 hours after the intervention protocol, except for Visual Analogue Scale (VAS), which was also evaluated 24 hours after exercise. The circumference of the limb, the pain sensation (VAS and algometry), the muscle activation amplitude (via Root Mean Square - RMS), median frequency, peak torque normalized per body weight, average peak torque, power and work were analyzed. The median frequency immediately after the intervention protocol on the cryotherapy group was the only variable that showed inter and intra-group differences; the remaining variables showed only intragroup differences. The perimetry values did not change immediately after the protocol on the groups which underwent cryotherapy and laser therapy, however, there was an increase after 48 hours; algometry values decreased in all groups for 48 hours and the VAS values increased 24 and 48 hours also for all groups. Regarding RMS no significant change was observed. For dynamometry, peak torque normalized per body weight and average peak torque had a similar behavior, with a reduction in the post protocol that has remained after 48 hours. For the power and work, a decrease was observed immediately after the protocol with a further reduction after 48 hours. Cryotherapy and laser therapy does not alter the muscle damage response, except for the perimetry values immediately after exercise.
Resumo:
Introduction: Hypoestrogenism is the main characteristic of female aging. It promotes significant changes in body composition, both in fat mass as in lean body mass, leading to a decrease in muscle strength and physical performance. Objective: The aim of this study was to test whether menopausal status and hormone levels are associated with muscular strength and physical performance in middle-aged women. Methods: In a cross-sectional study it was collected sociodemographic data, gynecological history, anthropometric and biochemical measures in women aged 40 to 65 years in Parnamirim-RN. The menopause status (pre, peri and post menopause) was determined by menstrual history. All women underwent three dimensions of physical performance assessment: handgrip dynamometry, gait speed and chair stands test - Short Physical Performance Battery (SPPB). Categorical data were presented as absolute and relative frequencies. Quantitative data were showed as mean and standard deviation and the normality of distribution was verified with Kolmogorov-Smirnov (KS) test. Biochemical measures of estradiol and follicle-stimulating hormone (FSH) were transformed to log10. ANOVA with Tukey post-test for comparison of variables between the groups pre, peri and post-menopausal was performed and then multiple linear regression analyzes. Results: Two hundred and seventy eight women aged 50.2 (±5.58) years composed this study, being 50 women in premenopausal status (18%), 122 in perimenopausal (43.9%), and 106 postmenopausal stage (38.1%). The groups were different in age (p=0.001), marital relationship duration (p <0.001), number of pregnancies (p=0.001) and parity (p=0.001). Differences in biochemical measures were observed among the groups: estradiol (p<0.001), FSH (p<0.001), total cholesterol (p=0.001). There were no differences in gait velocity between menopausal status. Values in mean of grip strength decreased by postmenopausal women to perimenopausal and premenopausal ones (24.5 ± 5.1, 25.6 ± 5.4, 26.9 ± 4.9 for post-stage, pre and peri menopausas, respectively, p = 0.02) and the performance of chair stands test was better in premenopausal women compared with that in peri and postmenopausal status (p = 0.02). In multiple linear regression for muscle strength, the variables that remained were: age, estradiol and somatic symptoms measured by Menopause Rating Scale-MRS (R2=0.15). While for the xiv chair-stands test the predictors were number of births and FSH values (R2=0.04). Conclusion: There is a relationship between the stages of menopause and muscle performance in measures of grip strength and sit-up test and these are influenced by the fall of estrogens levels. Data suggest that the decrease in muscle strength and physical performance already appear in the transition to menopause stage, pointing to the need for more research in this area and appropriate preventive interventions