22 resultados para Estimativa de parâmetro
Resumo:
The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin. The density contrast between sediments and basament is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function. The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method. As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition. The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief. In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings
Resumo:
The soil heat flux and soil thermal diffusivity are important components of the surface energy balance, especially in ar id and semi-arid regions. The obj ective of this work was to carry out to estimate the soil heat flux from th e soil temperature measured at a single depth, based on the half-order time derivative met hod proposed by Wang and Bras (1999), and to establish a method capable of es timating the thermal diffusivity of the soil, based on the half order derivative, from the temporal series of soil temperature at two depths. The results obtained in the estimates of soil heat flux were compared with the values of soil heat flux measured through flux plates, and the thermal di ffusivity estimated was compared with the measurements carried out in situ. The results obtained showed excellent concordance between the estimated and measured soil heat flux, with correlation (r), coeffici ent of determination (R 2 ) and standard error (W/m 2 ) of: r = 0.99093, R 2 = 0.98194 and error = 2.56 (W/m 2 ) for estimated period of 10 days; r = 0,99069, R 2 = 0,98147 and error = 2.59 (W/m 2 ) for estimated period of 30 days; and r = 0,98974, R 2 = 0,97958 and error = 2.77 (W/m 2 ) for estimated period of 120 days. The values of thermal di ffusivity estimated by the proposed method showed to be coherent and consis tent with in situ measured va lues, and with the values found in the literature usi ng conventional methods.
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.
Resumo:
O estudo dos efeitos que a diversidade de espécies pode causar nos processos ecossistêmicos tem crescido vertiginosamente nas últimas duas décadas. Diversos trabalhos experimentais realizados no mundo todo têm demonstrado que uma maior diversidade de plantas contribui para o aumento da produtividade de ecossistemas terrestres. Além disso, esse efeito pode influenciar processos em diversos níveis tróficos, contribuindo assim para a estabilidade dos processos ecossistêmicos a longo prazo. Paralelamente com os estudos do efeito da diversidade, muita atenção tem sido dada para desvendar o papel das características funcionais das espécies no funcionamento dos ecossistemas. Isto porque as características funcionais das espécies têm se mostrado importantes "peças" no entendimento dos efeitos que espécies individuais podem exercer nos ecossistemas e suas respostas ao ambiente. Nesta tese de doutorado eu explorei algumas lacunas de conhecimento dentro dessa área em crescente desenvolvimento conhecida na literatura ecológica como "biodiversidade e funcionamento dos ecossistemas". No primeiro capítulo, eu busquei evidências para mecanismos que podem explicar a relação positiva entre diversidade e funcionamento com foco em cinco mecanismos relacionados às interações entre plantas, tendo como parâmetro de funcionamento a produtividade primária. No segundo capítulo, eu utilizei técnicas para a estimativa de padrões de diversidade em escalas biogeográficas e bases de dados de satélites com longa duração para desvendar se a biodiversidade em escalas macroecológicas promove a estabilidade da produtividade dos ambientes terrestres no semiárido brasileiro. Por fim, o objetivo do terceiro capítulo foi entender como a perda da cobertura vegetal originária do uso da terra por comunidades tradicionais no semiárido brasileiro influenciaria os processos de interações entre plantas e o papel das características funcionais das espécies nessas interações. Acredito que a contribuição individual de cada capítulo preenche lacunas de conhecimento importantes dessa área da Ecologia que ainda se encontra em expansão.
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.