74 resultados para Enzimas digestivas
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
Despite advances in vaccine development and therapy, bacterial meningitis (BM) remains a major cause of death and long-term neurological disabilities. As part of the host inflammatory response to the invading pathogen, factors such as reactive oxygen species are generated, which may damage DNA and trigger the overactivation of DNA repair mechanisms. It is conceivable that the individual susceptibility and outcome of BM may be in part determined by non synonymous polymorphisms that may alter the function of crucial BER DNA repair enzymes as PARP-1, OGG-1 and APE-1. These enzymes, in addition to their important DNA repair function, also perform role of inflammatory regulators. In this work was investigated the non synonymous SNPs APE-1 Asn148Glu, OGG-1 Ser326Cys,PARP-1 Val762Ala, PARP-1 Pro882Leu and PARP-1 Cys908Tyr in patients with bacterial meningitis (BM), chronic meningitis (CM), aseptic meningitis (AM) and not infected (controls). As results we found increased frequency of variant alleles of PARP-1 Val762Ala (P = 0.005) and APE-1 Asn148Glu (P=0.018) in BM patients, APE-1 Asn148Glu in AM patients (P = 0.012) and decrease in the frequency of the variant allele OGG-1 Ser326Cys in patients with CM (P = 0.013), regarding the allelic frequencies in the controls. A major incidence of individuals heterozygous and/ or polymorphic homozygous in BM for PARP-1 Val762Ala (P= 0.0399, OD 4.2, 95% IC 1.213 -14.545) and PARP-1 Val762Ala/ APE-1 Asn148Glu (P = 0.0238, OD 11.111, 95% IC 1.274 - 96.914) was observed related to what was expected in a not infected population. It was also observed a major incidence of combined SNPs in the BM patients compared with the control group (P=0.0281), giving evidences that SNPs can cause some susceptibility to the disease. This combined effect of SNPs seems to regulate the principal cytokines and other factors related to BM inflammatory response and point the importance of DNA repair not only to repair activity when DNA is damaged, but to others essential functions to human organism balance.
Resumo:
The plant metabolism consists of a complex network of physical and chemical events resulting in photosynthesis, respiration, synthesis and degradation of organic compounds. This is only possible due to the different kinds of responses to many environmental variations that a plant could be subject through evolution, leading also to conquering new surroundings. The glyoxylate cycle is a metabolic pathway found in glyoxysomes plant, which has unique role in the seedling establishment. Considered as a variation of the citric acid cycle, it uses an acetyl coenzyme A molecule, derived from lipids beta-oxidation to synthesize compounds which are used in carbohydrate synthesis. The Malate synthase (MLS) and Isocitrate lyase (ICL) enzyme of this cycle are unique and essential in regulating the biosynthesis of carbohydrates. Because of the absence of decarboxylation steps as rate-limiting steps, detailed studies of molecular phylogeny and evolution of these proteins enables the elucidation of the effects of this route presence in the evolutionary processes involved in their distribution across the genome from different plant species. Therefore, the aim of this study was to establish a relationship between the molecular evolution of the characteristics of enzymes from the glyoxylate cycle (isocitrate lyase and malate synthase) and their molecular phylogeny, among green plants (Viridiplantae). For this, amino acid and nucleotide sequences were used, from online repositories as UniProt and Genbank. Sequences were aligned and then subjected to an analysis of the best-fit substitution models. The phylogeny was rebuilt by distance methods (neighbor-joining) and discrete methods (maximum likelihood, maximum parsimony and Bayesian analysis). The identification of structural patterns in the evolution of the enzymes was made through homology modeling and structure prediction from protein sequences. Based on comparative analyzes of in silico models and from the results of phylogenetic inferences, both enzymes show significant structure conservation and their topologies in agreement with two processes of selection and specialization of the genes. Thus, confirming the relevance of new studies to elucidate the plant metabolism from an evolutionary perspective
Resumo:
Serines proteinases inhibitors (PIs) are widely distributed in nature and are able to inhibit both in vitro and in vivo enzymatic activites. Seed PIs in than leguminous are classified in seven families, Bowman-Birk and Kunitz type families that most studied representing an important role in the first line of defense toward insects pests. Some Kunitz type inhibitors possess activities serine and cysteine for proteinases named bifunctional inhibitor, as ApTKI the inhibitor isolate from seed of Adenanthera pavonina. The A. pavonina inhibitor presenting the uncommon property and was used for interaction studies between proteinases serine (trypsin) and cysteine (papain). In order to determinate the in vitro interaction of ApTKI against enzymes inhibitor purification was carried cut by using chromatographic techniques and inhibition assays. The 3D model of the bifunctional inhibitor ApTKI was constructed SWISS-MODEL program by homology modeling using soybean trypsin inhibitor (STI, pdb:1ba7), as template which presented 40% of identity to A. pavonina inhibitor. Model quality was evaluated by PROCHECK program. Moreover in silico analyzes of formed complex between the enzymes and ApTKI was evaluated by HEX 4.5 program. In vitro results confirmed the inhibitory assays, where the inhibitor presented the ability to simultaneously inhibit trypsin and papain. The residues encountered in the inhibitor model of folder structural three-dimensional that make contact to enzymes target coud explain the specificity pattern against serine and cysteine proteinases
Resumo:
A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan
Resumo:
One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Seeds from legumes including the Glycine max are known to be a rich source of protease inhibitors. The soybean Kunitz trypsin inhibitor (SKTI) has been well characterised and has been found to exhibit many biological activities. However its effects on inflammatory diseases have not been studied to date. In this study, SKTI was purified from a commercial soy fraction, enriched with this inhibitor, using anion exchange chromatography Resource Q column. The purified protein was able to inhibit human neutrophil elastase (HNE) and bovine trypsin. . Purified SKTI inhibited HNE with an IC50 value of 8 µg (0.3 nM). At this concentration SKTI showed neither cytotoxic nor haemolytic effects on human blood cell populations. SKTI showed no deleterious effects on organs, blood cells or the hepatic enzymes alanine amine transferase (ALT) and aspartate amino transferase (AST) in mice model of acute systemic toxicity. Human neutrophils incubated with SKTI released less HNE than control neutrophils when stimulated with PAF or fMLP (83.1% and 70% respectively). These results showed that SKTI affected both pathways of elastase release by PAF and fMLP stimuli, suggesting that SKTI is an antagonist of PAF/fMLP receptors. In an in vivo mouse model of acute lung injury, induced by LPS from E. coli, SKTI significantly suppressed the inflammatory effects caused by elastase in a dose dependent manner. Histological sections stained by hematoxylin/eosin confirmed this reduction in inflammation process. These results showed that SKTI could be used as a potential pharmacological agent for the therapy of many inflammatory diseases
Resumo:
Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided
Resumo:
studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
Resumo:
Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals
Resumo:
Chitinases are enzymes involved in degradation of chitin and are present in a range of organisms, including those that do not contain chitin, such as bacteria, viruses, plants and animals, and play important physiological and ecological roles. Chitin is hydrolyzed by a chitinolytic system classified as: endo-chitinases, exo-chitinases and N-acetyl-b-D-glucosaminidases. In this study a Litochitinase1 extracted from the cephalotorax of the shrimp Litopenaeus Schmitt was purified 987.32 times using ionexchange chromatography DEAE-Biogel and molecular exclusion Sephacryl S-200. These enzyme presented a molecular mass of about 28.5 kDa. The results, after kinetic assay with the Litochitinase1 using as substrate p-nitrophenyl-N-acetyl-b-Dglucosaminideo, showed apparent Km of 0.51 mM, optimal activity at pH ranging from 5.0 to 6.0, optimum temperature at 55°C and stability when pre-incubated at temperatures of 25, 37, 45, 50 and 55°C. The enzyme showed a range of stability at pH 4.0 to 5.5. HgCl2 inhibited Litochitinase1 while MgCl2 enhances its activity. Antimicrobial tests showed that Litochitinase1 present activity against gram-negative bacterium Escherichia coli in the 800 μg/mL concentration. The larvicidal activity against Aedes aegypti was investigated using crude extracts, F-III (50-80%) and Litochitinase1 at 24 and 48 hours. The results showed larvicidal activity in all these samples with EC50 values of 6.59 mg/mL for crude extract, 5.36 mg/mL for F-III and 0.71 mg/mL for Litochitinase1 at 24 hours and 3.22 and 0.49 mg/mL for the F-III and Litochitinase1 at 48 hours, respectively. Other experiments confirmed the presence of chitin in the midgut of Aedes aegypti larvae, which may be suffering the action of Litochitinase1 killing the larvae, but also the absence of contaminating proteins as serine proteinase inhibitors and lectins in the crude extract, F-III and Litochitinase1, indicating that the death of the larvae is by action of the Litochitinase1. We also observed that the enzymes extracted from intestinal homogenate of the larvae no have activity on Litochitinase1. These results indicate that the enzyme can be used as an alternative to control of infections caused by Escherichia coli and reducing the infestation of the mosquito vector of dengue.
Resumo:
Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.
Resumo:
The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)