21 resultados para Domain-specific programming languages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mainstream programming languages provide built-in exception handling mechanisms to support robust and maintainable implementation of exception handling in software systems. Most of these modern languages, such as C#, Ruby, Python and many others, are often claimed to have more appropriated exception handling mechanisms. They reduce programming constraints on exception handling to favor agile changes in the source code. These languages provide what we call maintenance-driven exception handling mechanisms. It is expected that the adoption of these mechanisms improve software maintainability without hindering software robustness. However, there is still little empirical knowledge about the impact that adopting these mechanisms have on software robustness. This work addresses this gap by conducting an empirical study aimed at understanding the relationship between changes in C# programs and their robustness. In particular, we evaluated how changes in the normal and exceptional code were related to exception handling faults. We applied a change impact analysis and a control flow analysis in 100 versions of 16 C# programs. The results showed that: (i) most of the problems hindering software robustness in those programs are caused by changes in the normal code, (ii) many potential faults were introduced even when improving exception handling in C# code, and (iii) faults are often facilitated by the maintenance-driven flexibility of the exception handling mechanism. Moreover, we present a series of change scenarios that decrease the program robustness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph Reduction Machines, are a traditional technique for implementing functional programming languages. They allow to run programs by transforming graphs by the successive application of reduction rules. Web service composition enables the creation of new web services from existing ones. BPEL is a workflow-based language for creating web service compositions. It is also the industrial and academic standard for this kind of languages. As it is designed to compose web services, the use of BPEL in a scenario where multiple technologies need to be used is problematic: when operations other than web services need to be performed to implement the business logic of a company, part of the work is done on an ad hoc basis. To allow heterogeneous operations to be part of the same workflow, may help to improve the implementation of business processes in a principled way. This work uses a simple variation of the BPEL language for creating compositions containing not only web service operations but also big data tasks or user-defined operations. We define an extensible graph reduction machine that allows the evaluation of BPEL programs and implement this machine as proof of concept. We present some experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on Wireless Sensor Networks (WSN) has evolved, with potential applications in several domains. However, the building of WSN applications is hampered by the need of programming in low-level abstractions provided by sensor OS and of specific knowledge about each application domain and each sensor platform. We propose a MDA approach do develop WSN applications. This approach allows domain experts to directly contribute in the developing of applications without needing low level knowledge on WSN platforms and, at the same time, it allows network experts to program WSN nodes to met application requirements without specific knowledge on the application domain. Our approach also promotes the reuse of the developed software artifacts, allowing an application model to be reused across different sensor platforms and a platform model to be reused for different applications