20 resultados para Cronodinâmica quântica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dengue virus is an important patogen that causes Dengue desease in all world, and belongs to Flavivirus gender. The virus consists of enveloped RNA with a single strand positive sense, 11Kb genome. The RNA is translated into a polyprotein precursor, wich is cleaved into 3 structural proteins (C, prM e E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B e NS5). The NS3 is a multifunctional protein, that besides to promote the polyprotein precursor cleavage, also have NTPase, helicase and RTPase activity. The NS3 needs a hydrophilic segment of 40 residues from the transmembrane NS2B protein (who acts like cofator) to realize this functions. Actually, there's no vacines available on the market, and the treatment are just symptomatic. The tetrapeptide inhibitor Bz-Nle-Lys-Arg-Arg-H (Ki de 5,8-7,0 M) was showed as a potent inhibitor μ for NS3prot in Dengue virus. That is a inteligent alternative to treat the dengue desease. The present work aimed analyse the interactions of the ligand bounded to the activity site to provid a clear and depth vision of that interaction. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant = 20 ε and 80 was used. The results demonstrate that the interaction energy of the system reached convergence at 13.5 A. Within a radius of 13,5A the most important residues were identified. Met49, Met84 and Asp81 perform interactions of hydrogen with the ligant. The Asp79 and Asp75 residues present high energy of attraction. Arg54, Arg85 and Lys 131 perform hydrogen interactions with the ligand, however, appear in BIRD graph having high repulsion energy with the inhibitor. The data also emphasizes the importance of residue Tyr161 and the involvement of the catalytic triad composed by Asp75, His51 and Ser135

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed first, the theoretical study of tetrahedral intermediate stability formed from carbonyl addition reactions using the second (MP2) and third (MP3) order Møller–Plesset perturbation theory. Linear correlations between electronic energy difference of reactions with Wiberg Indexes and C-O bond lengths were obtained, and was observed that the stability of adducts formed depends directly of electronic density involved between these atoms. The knowing of electronic parameters of these structures has an important hole due to the large use on reactions that in his course forms this tetrahedral intermediate. Employing the ONIOM (B3LYP:AMBER) methodology, was evaluated the stereoselectivity of a enzymatic reaction between CAL B enzyme and a long chain ester. In this study, were obtained the electronic energies of ground state and intermediate state of transesterification rate-determing step from two possible proquirals faces Re and Si. The objective was study the enantioselectivity of CAL B and rationalizes it using quantum theory of atoms in molecules (QTAIM). A theoretical study employing inorganic compounds was performed using ab initio CBS-QB3 method aiming to find a link between thermodynamic and equilibrium involving acids and bases. The results observed showed an excellent relationship between difference in Gibbs free energy, ΔG of acid dissociation reaction and ΔG of hydrolysis reaction of the corresponding conjugate base. It was also observed, a relationship between ΔG of hydrolysis reaction of conjugate acids and their corresponding atomic radius showing that stability plays an important role in hydrolysis reactions. The importance of solvation in acid/base behavior when compared to theoretical and experimental ΔG´s also was evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it were developed synthetic and theoretical studies for clerodane-type diterpenes obtained from Croton cajucara Benth which represents one of the most important medicinal plant of the Brazil amazon region. Specifically, the majoritary biocompound 19-nor-clerodane trans-dehydrocrotonin (t-DCTN) isolated from the bark of this Croton, was used as target molecule. Semi-synthetic derivatives were obtained from t-DCTN by using the followed synthetic procedures: 1) catalytic reduction with H2, 2) reduction using NaBH4 and 3) reduction using NaBH4/CeCl3. The semi-synthetic 19-nor-furan-clerodane alcohol-type derivatives were denominated such as t-CTN, tCTN-OL, t-CTN-OL, t-DCTN-OL, t-DCTN-OL, being all of them characterized by NMR. The furan-clerodane alcohol derivatives t-CTN-OL and tCTN-OL were obtained form the semi-synthetic t-CTN, which can be isolated from the bark of C. cajucara. A theoretical protocol (DFT/B3LYP) involving the prevision of geometric and magnetic properties such as bond length and angles, as well as chemical shifts and coupling constants, were developed for the target t-DCTN in which was correlated NMR theoretical data with structural data, with satisfactory correlation with NMR experimental data (coefficients ranging from 0.97 and 0.99) and X-ray diffraction data. This theoretical methodology was also validated for all semi-synthetic derivatives described in this work. In addition, topological data from the Quantum Theory of Atoms in Molecules (QTAIM) showed the presence of H-H and (C)O--H(C) intramolecular stabilized interactions types for t-DCTN e t-CTN, contributing to the understanding of the different reactivity of this clerodanes in the presence of NaBH4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Einstein’s equations with negative cosmological constant possess the so-called anti de Sitter space, AdSd+1, as one of its solutions. We will later refer to this space as to the "bulk". The holographic principle states that quantum gravity in the AdSd+1 space can be encoded by a d−dimensional quantum field theory on the boundary of AdSd+1 space, invariant under conformal transformations, a CFTd. In the most famous example, the precise statement is the duality of the type IIB string theory in the space AdS5 × S 5 and the 4−dimensional N = 4 supersymmetric Yang-Mills theory. Another example is provided by a relation between Einstein’s equations in the bulk and hydrodynamic equations describing the effective theory on the boundary, the so-called fluid/gravity correspondence. An extension of the "AdS/CFT duality"for the CFT’s with boundary was proposed by Takayanagi, which was dubbed the AdS/BCFT correspondence. The boundary of a CFT extends to the bulk and restricts a region of the AdSd+1. Neumann conditions imposed on the extension of the boundary yield a dynamic equation that determines the shape of the extension. From the perspective of fluid/gravity correspondence, the shape of the Neumann boundary, and the geometry of the bulk is sourced by the energy-momentum tensor Tµν of a fluid residing on this boundary. Clarifying the relation of the Takayanagi’s proposal to the fluid/gravity correspondence, we will study the consistence of the AdS/BCFT with finite temperature CFT’s, or equivalently black hole geometries in the bulk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce travail a recherché sur le processus de préparation corporel\vocal\énergique de l’acteur pour la rue. Notre quête principale c’est comprendre les processus qui l'acteur se déplace afin de développer une énergie à la scène dans la rue. C'est cette énergie qui est mis en place et se rapporte à le passant\spectateur? Qui attire l'attention de passant\spectateur? Serai l'histoire? Le code vestimentaire ou être une expressivité dynamisée? Serai une énergie présente dans le corps de l'acteur qui se relacione avec les passants? Comme l'acteur se rapporte à l'espace urbain? Pour tenter de répondre à ces questions, nous allons utilisé certains principes de la physique moderne, tels comme: la Théorie Quantique et le Principe d'Incertitude, autan la Théorie du Chaos. Le théâtre jouée dans les rues, surtout par le biais de longs prolongements de construction scénique, cependant, lorsque présentée au public, est prise par les autres causalités, car étant situé sur la rue, l'acteur devient assujettie à cet espace et ne peut pas nier la possibilité des faits qui peuvent se produire. Selon la physique quantique l'énergie se propage dans un espace vide, la quantité d'énergie physique étant échangé dans la rue, ce qui entraîne le moment magique où les corps des acteurs, des échanges constants avec les spectateurs, en permettant le saut quantique: le spectacle théâtral de la rue.