36 resultados para Concreto armado - Modelos matemáticos
Resumo:
The decrease in crime is one of the core issues that cause concern in society today. This study aims to propose improvements to public safety from the choice of points to the location of police units, ie the points which support the car and the police. For this, three models were developed in order to assist decision making regarding the best placement of these bases. The Model of Police Units Routing has the intention to analyze the current configuration of a given region and develop optimal routes for round preventative. The Model of Allocation and Routing for New Police Units (MARNUP) used the model of facility location called p-median weighted and traveling salesman problem (TSP) combined aiming an ideal setting for regions that do not yet have support points or to assess how far the distribution is present in relation to that found in solution. The Model Redefinition and Routing Unit Police (MRRUP) seek to change the current positioning taking into account the budgetary constraints of the decision maker. To verify the applicability of these models we used data from 602 points to instances of police command that is responsible for the capital city of Natal. The city currently has 31 police units for 36 of these 19 districts and police have some assistance. This reality can lead to higher costs and higher response times for answering emergency calls. The results of the models showed that in an ideal situation it is possible to define a distance of 500 km/round, whereas in this 900 km are covered by approximately round. However, a change from three-point lead reduced to 700 km / round which represents a decrease of 22% in the route. This reduction should help improve response time to emergency care, improving the level of service provided by the increase of solved cases, reducing police shifts and routing preventive patrols
Resumo:
This work intends to analyze the behavior of the gas flow of plunger lift wells producing to well testing separators in offshore production platforms to aim a technical procedure to estimate the gas flow during the slug production period. The motivation for this work appeared from the expectation of some wells equipped with plunger lift method by PETROBRAS in Ubarana sea field located at Rio Grande do Norte State coast where the produced fluids measurement is made in well testing separators at the platform. The oil artificial lift method called plunger lift is used when the available energy of the reservoir is not high enough to overcome all the necessary load losses to lift the oil from the bottom of the well to the surface continuously. This method consists, basically, in one free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well s lifting efficiency. A pneumatic control valve is mounted at the flow line to control the cycles. When this valve opens, the plunger starts to move from the bottom to the surface of the well lifting all the oil and gas that are above it until to reach the well test separator where the fluids are measured. The well test separator is used to measure all the volumes produced by the well during a certain period of time called production test. In most cases, the separators are designed to measure stabilized flow, in other words, reasonably constant flow by the use of level and pressure electronic controllers (PLC) and by assumption of a steady pressure inside the separator. With plunger lift wells the liquid and gas flow at the surface are cyclical and unstable what causes the appearance of slugs inside the separator, mainly in the gas phase, because introduce significant errors in the measurement system (e.g.: overrange error). The flow gas analysis proposed in this work is based on two mathematical models used together: i) a plunger lift well model proposed by Baruzzi [1] with later modifications made by Bolonhini [2] to built a plunger lift simulator; ii) a two-phase separator model (gas + liquid) based from a three-phase separator model (gas + oil + water) proposed by Nunes [3]. Based on the models above and with field data collected from the well test separator of PUB-02 platform (Ubarana sea field) it was possible to demonstrate that the output gas flow of the separator can be estimate, with a reasonable precision, from the control signal of the Pressure Control Valve (PCV). Several models of the System Identification Toolbox from MATLAB® were analyzed to evaluate which one better fit to the data collected from the field. For validation of the models, it was used the AIC criterion, as well as a variant of the cross validation criterion. The ARX model performance was the best one to fit to the data and, this way, we decided to evaluate a recursive algorithm (RARX) also with real time data. The results were quite promising that indicating the viability to estimate the output gas flow rate from a plunger lift well producing to a well test separator, with the built-in information of the control signal to the PCV
Resumo:
Este trabalho propõe um ambiente computacional aplicado ao ensino de sistemas de controle, denominado de ModSym. O software implementa uma interface gráfica para a modelagem de sistemas físicos lineares e mostra, passo a passo, o processamento necessário à obtenção de modelos matemáticos para esses sistemas. Um sistema físico pode ser representado, no software, de três formas diferentes. O sistema pode ser representado por um diagrama gráfico a partir de elementos dos domínios elétrico, mecânico translacional, mecânico rotacional e hidráulico. Pode também ser representado a partir de grafos de ligação ou de diagramas de fluxo de sinal. Uma vez representado o sistema, o ModSym possibilita o cálculo de funções de transferência do sistema na forma simbólica, utilizando a regra de Mason. O software calcula também funções de transferência na forma numérica e funções de sensibilidade paramétrica. O trabalho propõe ainda um algoritmo para obter o diagrama de fluxo de sinal de um sistema físico baseado no seu grafo de ligação. Este algoritmo e a metodologia de análise de sistemas conhecida por Network Method permitiram a utilização da regra de Mason no cálculo de funções de transferência dos sistemas modelados no software
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
This work aims to predict the total maximum demand of a transformer that will be used in power systems to attend a Multiple Unit Consumption (MUC) in design. In 1987, COSERN noted that calculation of maximum total demand for a building should be different from that which defines the scaling of the input protection extension in order to not overestimate the power of the transformer. Since then there have been many changes, both in consumption habits of the population, as in electrical appliances, so that this work will endeavor to improve the estimation of peak demand. For the survey, data were collected for identification and electrical projects in different MUCs located in Natal. In some of them, measurements were made of demand for 7 consecutive days and adjusted for an integration interval of 30 minutes. The estimation of the maximum demand was made through mathematical models that calculate the desired response from a set of information previously known of MUCs. The models tested were simple linear regressions, multiple linear regressions and artificial neural networks. The various calculated results over the study were compared, and ultimately, the best answer found was put into comparison with the previously proposed model
Resumo:
The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation
Resumo:
The determination of the rheology of drilling fluids is of fundamental importance to select the best composition and the best treatment to be applied in these fluids. This work presents a study of the rheological behavior of some addictives used as viscosifiers in water-based drilling fluids. The evaluated addictives were: Carboxymethylcellulose (CMC), Xanthan gum (GX), and Bentonite. The main objective was to rheologically characterize suspensions composed by these addictives, by applying mathematical models for fluid flow behavior, in order to determine the best flow equation to represent the system, as well as the model parameters. The mathematical models applied in this research were: the Bingham Model, the Ostwald de Wale Model, and the Herschel-Bulkley Model. A previous study of hydration time for each used addictive was accomplished seeking to evaluate the effect of polymer and clay hydration on rheological behavior of the fluid. The rheological characterization was made through typical rheology experiments, using a coaxial cylinder viscosimeter, where the flow curves and the thixotropic magnitude of each fluid was obtained. For each used addictive the rheological behavior as a function of temperature was also evaluated as well as fluid stability as a function of the concentration and kind of addictive used. After analyses of results, mixtures of polymer and clay were made seeking to evaluate the rheological modifications provided by the polymer incorporation in the water + bentonite system. The obtained results showed that the Ostwald de Waale model provided the best fit for fluids prepared using CMC and for fluids with Xanthan gum and Bentonite the best fit was given by the Herschel-Bulkley one
Resumo:
Environmental sustainability has become one of the topics of greatest interest in industry, mainly due to effluent generation. Phenols are found in many industries effluents, these industries might be refineries, coal processing, pharmaceutical, plastics, paints and paper and pulp industries. Because phenolic compounds are toxic to humans and aquatic organisms, Federal Resolution CONAMA No. 430 of 13.05.2011 limits the maximum content of phenols, in 0.5 mg.L-1, for release in freshwater bodies. In the effluents treatment, the liquid-liquid extraction process is the most economical for the phenol recovery, because consumes little energy, but in most cases implements an organic solvent, and the use of it can cause some environmental problems due to the high toxicity of this compound. Because of this, exists a need for new methodologies, which aims to replace these solvents for biodegradable ones. Some literature studies demonstrate the feasibility of phenolic compounds removing from aqueous effluents, by biodegradable solvents. In this extraction kind called "Cloud Point Extraction" is used a nonionic surfactant as extracting agent of phenolic compounds. In order to optimize the phenol extraction process, this paper studies the mathematical modeling and optimization of extraction parameters and investigates the effect of the independent variables in the process. A 32 full factorial design has been done with operating temperature and surfactant concentration as independent variables and, parameters extraction: Volumetric fraction of coacervate phase, surfactant and residual concentration of phenol in dilute phase after separation phase and phenol extraction efficiency, as dependent variables. To achieve the objectives presented before, the work was carried out in five steps: (i) selection of some literature data, (ii) use of Box-Behnken model to find out mathematical models that describes the process of phenol extraction, (iii) Data analysis were performed using STATISTICA 7.0 and the analysis of variance was used to assess the model significance and prediction (iv) models optimization using the response surface method (v) Mathematical models validation using additional measures, from samples different from the ones used to construct the model. The results showed that the mathematical models found are able to calculate the effect of the surfactant concentration and the operating temperature in each extraction parameter studied, respecting the boundaries used. The models optimization allowed the achievement of consistent and applicable results in a simple and quick way leading to high efficiency in process operation.
Resumo:
The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer
Resumo:
O óleo produzido nos novos campos de petróleo está cada vez mais parafínico e viscoso, com isso, à medida que o óleo é escoado, parafinas são depositadas sobre as paredes internas do tubo, e ao longo do tempo, tendem a reduzir drasticamente a área transversal ao escoamento. Visando estudar o processo de solubilização da parafina em dutos, esse trabalho objetiva desenvolver modelos matemáticos que represente o processo, com base nos fenômenos envolvidos no mesmo tais como transferência de massa, transferência de energia e equilíbrio sólido-líquido, implementando-os em um ambiente de desenvolvimento VBA (Visual Basic) for Excel ®. O presente trabalho foi realizado em quatro etapas: i) modelagem dos fenômenos de transferência de calor e massa, ii) modelagem da rotina dos coeficientes de atividade através do modelo UNIFAC e modelagem do sistema de equilíbrio sólido-líquido; iii) modelagem matemática do processo de solubilização e cálculo da espessura da parafina ao longo do tempo; iv) implementação dos modelos em um ambiente de desenvolvimento VBA for Excel® e criação de um simulador com uma interface gráfica, para simular o processo de solubilização da parafina depositada em dutos e sua otimização. O simulador conseguiu produzir soluções bastante adequadas, mantendo continuidade das equações diferenciáveis do balanço de energia e de massa, com uma interpretação física viável, sem a presença de dissipação de oscilações nos perfis de temperatura e massa. Além disso, esse simulador visa permitir a simulação nas diversas condições de escoamento, bem como compreender a importância das variáveis (vazão, temperatura de entrada, temperatura externa, cadeia carbônica do solvente). Através dos resultados foram possíveis verificar os perfis de temperatura, fração molar e o de solubilização
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
Circadian rhythms are variations in physiological processes that help living beings to adapt to environmental cycles. These rhythms are generated and are synchronized to the dark light cycle through the suprachiasmatic nucleus. The integrity of circadian rhythmicity has great implication on human health. Currently it is known that disturbances in circadian rhythms are related to some problems of today such as obesity, propensity for certain types of cancer and mental disorders for example. The circadian rhythmicity can be studied through experiments with animal models and in humans directly. In this work we use computational models to gather experimental results from the literature and explain the results of our laboratory. Another focus of this study was to analyze data rhythms of activity and rest obtained experimentally. Here we made a review on the use of variables used to analyze these data and finally propose an update on how to calculate these variables. Our models were able to reproduce the main experimental results in the literature and provided explanations for the results of experiments performed in our laboratory. The new variables used to analyze the rhythm of activity and rest in humans were more efficient to describe the fragmentation and synchronization of this rhythm. Therefore, the work contributed improving existing tools for the study of circadian rhythms in mammals
Resumo:
As social animals, primates use different sensory modalities (acoustic, chemical, tactile and visual) to convey information about social and sexual status to conspecifics. Among these modalities, visual signals are widely used, especially color signals, since primates are the mammalian group that displays the greatest variety of colors in their skin and fur. Studies with Old World primate species suggest that hormonal variations are related to variations in the colors of individual faces and genitals. Therefore, chromatic cues can be used by conspecifics to identify the reproductive condition of an individual. To date, studies with the same approach are unknown for New World species. However, behavioral and physiological studies suggest that different New World primate species seem to perceive reproductive conditions such as the timing of female conception and gestation. Thus, in this study, our aim was to: i) identify whether there are chromatic cues on the skin of female common marmosets, (Callithrix jacchus) that indicate their reproductive condition; ii) define whether this chromatic variation can be perceived by all visual phenotypes known in this species; iii) identify if these chromatic cues can be perceived under different light intensity levels (dim, intermediate and high). For this, we selected 13 female common marmosets in four distinct reproductive conditions: pregnant female preceding parturition, postpartum mothers, noncycling and cycling females. The coloration of the skin in genital and thigh areas in females was measured using a spectrophotometer. Using mathematical models of visual perception, we calculated the values of quantum catch for each photoreceptor type known in this species, the visual opponency channels and color contrast between those body spots. Our results indicate the occurance of chromatic variations in the genital area during the weeks that precede and follow parturition, forming a U-pattern of variation perceptible to males and females in natural conditions of low and high luminosity. Furthermore, we observed distinct color patterns in the genital skin of pregnant and cycling females that indicate their reproductive conditions. Finally, we present evidence of color contrast in noncycling females that is higher than that of pregnant ones. This study suggests that there is a chromatic xii variation in the genital skin of females that can be perceived by conspecifics and that may be related to hormonal changes typical of pregnancy and the ovarian cycle
Resumo:
The interval datatype applications in several areas is important to construct a interval type reusable, i.e., a interval constructor can be applied to any datatype and get intervals this datatype. Since the interval is, of certain form, a set of elements limited for two bounds, left and right, with a order notions, then it s reasonable that interval constructor enclose datatypes with partial order. On the order hand, what we want is work with interval of any datatype like this we work with this datatype then. it s important to guarantee the properties of the datatype when maps to interval of this datatype. Thus, the interval constructor get a theory to parametrized interval type, i.e., a interval with generics parameters (for example rational, real, complex). Sometimes, the interval application in some algebras doesn t guarantee the mainutenance of their properties, for example, when we use interval of real, that satisfies the field properties, it doesn t guarantee the distributivity propertie. A form to surpass this problem Santiago introduced the local equality theory that weakened the notion of strong equality, and thus, allowing some properties are local keeped, what can be discard before. The interval arithmetic generalization aim to apply the interval constructor on ordered algebras weakened for local equality with the purpose of the keep their properties. How the intervals are important in applications with continuous data, it s interesting specify that theory using a specification language that supply a system development using intervals of form disciplined, trustworth and safe. Currently, the algebraic specification language, based in math models, have been use to that intention often. We choose CASL (Common Algebraic Specification Language) among others languages because CASL has several characteristics excellent to parametrized interval type, such as, provide parcialiy and parametrization
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells