29 resultados para Compuestos aromáticos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The petroleum industry deals with problems which are difficult to solve because of their relation to environmental issues. This is because amounts of residue are generated which vary in type and danger level. The soil contamination by non aqueous liquid phase mixtures, specifically hydrocarbon petroleum has been a reason for great concern, mainly the aromatic and polycyclic aromatic, which present risk to human health due to its carcinogenic and mutagenic character. The Advanced Oxidative Processes (AOP) are efficient technologies for destruction of organic compounds of difficult degradation and, often, they are present in low concentrations. They can be considered clean technologies, because there is no formation of solid by-products or the transfer of pollutor phases. This work focuses on the study of the degradation of petroleum industrial waste, by Advanced Oxidation Processes. Treatments tackling petroleum residues, contaminated soil, and water occurring in the production of petroleum reached the following Polycyclic Aromatic Hydrocarbons (PAH) degradation levels: solid residues 100% in 96 treatment hours; water residue - 100% in 6 treatment hours; soil contamination (COT degradation) - 50.3% in 12 treatment hours. AOP were effective in dealing with petroleum residues thus revealing themselves to be a promising treatment alternative

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PAHs (Polycyclic Aromatic Hydrocarbons) are a group of organic substances which receive considerable attention because of the carcinogenic and mutagenic properties of some of them. It is therefore important to determine the PAHs in different environmental matrices. Several studies have shown the use of gas chromatography coupled to mass spectrometry as a technique for quantification of PAHs by presenting excellent detection limits. This study aimed to develop an analytical methodology for the determination of 16 PAHs listed by the USEPA, test two methods for extraction of PAHs in water from a 23 factorial design, quantify them through the analytical technique coupled to gas chromatography mass spectrometry (GC/MS) using the method developed, and finally apply the results in chemometrics. The sample was synthesized and subjected to tests of the 23 factorial design, which has the factors: the type of extraction technique (ultrasound and digester), the ratio solvent / sample (1:1 and 1:3) and the type of solvent (dichloromethane / hexane and acetone / dichloromethane). The responses of eight combinations of the factorial design were obtained from the quantification by external calibration in GC/MS. The quantification method was developed from an optimized adaptation of the USEPA Method 8270. We used the full scan mode as a way of acquiring the mass spectra of 16 PAHs. The time in which the samples were subjected to ultrasound was fixed at 10 min and held an investigation to establish the conditions of power and time in the digester. We had the best response in the investigation of the digester power of 100 watts and the time of six minutes. The factorial design of liquid-liquid extraction showed that the most representative factors were: the use of the digester as extraction technique, the ratio solvent / sample 1:1 and the use of a 1:1 mixture of dichloromethane / hexane as a solvent more suitable. These results showed that the 1:1 mixture of dichloromethane / hexane is an excellent mixture to recover the extraction of PAHs an aqueous sample using the microwave digester. The optimization of the method of separation, identification and quantification of PAHs in the GC/MS was valid for 16 PAHs present in each chromatogram of the samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) constitute a family of compounds characterized by having two or more condensed aromatic rings and for being a class of substances that are widely distributed in the environment as a complex mixture, being very persistent in the environment due to its low solubility in water. The application of chemometric methods to analytical chemistry has provided excellent results in studying the solubility of PAHs in aqueous media in order to understand the mechanisms involved in environmental contamination. The method consists in analyzing the solubilization of PAHs from diesel oil in water varying parameters such as stirring time, volume of oil added and pH, using a full factorial design of two levels and three factors. PAHs were extracted with n-hexane and analyzed by fluorescence spectroscopy because they have molecular characteristics fluorescent due to the large number of condensed rings and links, and gas chromatography coupled to a mass spectrometer (GC-MS). The results of fluorescence analysis showed that only the stirring time and pH influenced the solubility of PAHs in diesel fuel. How is a non-selective technique for the study of fluorescence was performed on form and semi-quantitative. And for the chromatographic analysis the results showed that the solubility of the different PAHs is influenced differently so that you can classify them into groups by the results of the effects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Amazon holds over half of the planet's remaining tropical forests and comprises the largest biodiversity in the world, accounting for approximately 60 % of the Brazilian territory. However, deforestation fires in the region causes serious problems to exposed human. The aim of this study was to evaluate the chemical compounds as well as the cellular and molecular effects after exposure to organic material extracted from particulate matter less than 10 µm (PM10) in the Amazon region. As for the chemical composition, n-alkanes analysis showed a prevalence of anthropogenic influence during the fires in the region. In addition, there was a predominance of monosaccharides from biomass burning markers. Also, the Polycyclic Aromatic Hydrocarbons (PAH) and their derivatives have also been identified in samples collected in the Amazon. By using the PAH concentrations was possible to calculate the BaP-equivalent and it was found that the dibenz(a) anthracene contributes with 83% to potential carcinogenic risk. As for the potential mutagenic risk, the benzo (a) pyrene is the HPA that has a major contribution in this analysis. It may be noted that the retene was the most abundant PAH. This compound was genotoxic and cause death by necrosis in the human lung cells. In biological tests, the data showed that organic PM10 is capable of causing genetic damage in both plant cells and in human lung cells. This damage cause an arrest in the G1 phase of the cell cycle exposed, increasing the expression of p53 and p21. Additionally, the PM10 caused cell death by apoptosis, increasing the foci of histone - H2AX. Given these results, it is important to emphasize the reduction and better control of biomass burning in the Amazon region thus improving the quality of health of the population being exposed. As clearly stated recently by the World Health Organization, the reduction of air pollution could save millions of lives annually.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we evaluated the capacity removal of PAHs in an oily solution between the bentonite hydrofobized with linseed oil and paraffin with natural bentonite. Analyses of natural bentonite and hydrofobized were made by the characterization techniques: (1) Thermogravimetric Analysis (TGA), which aimed to evaluate the thermal events due to mass loss, both associated with the exit of moisture and decomposition of clay as due to hidrofobizante loss agent. (2) Analysis of X-ray diffraction (XRD) in order to determine the mineralogical phases that make up the structure of clay and (3) Spectrophotometry in the infrared region used to characterize the functional groups of both the matrix mineral (bentonite) and the hidrofobizantes agents (linseed oil and paraffin). We used a factorial design 24 with the following factors; hidrofobizante, percent hidrofobizante, adsorption time and volume of the oily solution. Analyzing the factorial design 24 was seen that none of the factors apparently was more important than the others and, as all responses showed significant values in relation to the ability of oil removal was not possible to evaluate a difference in the degree of efficiency the two hidrofobizantes. For the new study compared the efficiency of the modified clay, with each hidrofobizante separately in relation to their natural form. As such, there are four new factorial designs 23 using natural bentonite as a differentiating factor. The factors used were bentonite (with and without hydrophobization), exposure time of the adsorbent material to the oily solution and volume of an oily solution, trying to interpret how these factors could influence the process of purifying water contaminated with PAHs. Was employed as a technique for obtaining responses to fluorescence spectroscopy, as already known from literature that PAHs, for presenting combined chains due to condensation of the aromatic rings fluoresce quite similar when excited in the ultraviolet region and as an auxiliary technique to gas chromatography / mass spectrometry (GC-MS) used for the analysis of PAHs in order to complement the study of fluorescence spectroscopy, since the spectroscopic method only allows you an idea of total number of fluorescent species contained in the oil soluble. The result shows an excellent adsorption of PAHs and other fluorescent species assigned to the main effect of the first factor, hydrophobization for the first planning 23 BNTL 5%, for 93% the sixth stop in the second test (+-+),factorial design 23 BNTL 10%, the fourth test (++-) with 94.5% the third factorial design 23 BNTP 5%, the second test (+--) with 91% and the fourth and final planning 23 BNTP 10%, the last test ( + + +) with 88%. Compared with adsorption of bentonite in its natural form. This work also shows the maximum adsorption of each hidrofobizante

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control