43 resultados para Características geométricas
Resumo:
Objective: The aim of the study was to investigate physical characteristics and to examine association between somatotype and performance in collegiate runners of 100 m and 400 m. Methods: The sample, male runners (n=39) competing at the regional level in the state of Rio Grande do Norte, Brazil, had height, body mass, skinfolds, limb circumference and skeletal breadths measured. Then, the somatotype was calculated by Health-Carter method. Races (100 m and 400 m) were held to assess athletic performance. Descriptive statistics were calculated for the total sample, as well as for the 100 m and 400 m groups, and established four subgroups, named quartiles. For analysis between groups of runners (100 m x 400 m) was used Student's t test for independent samples. To examine the relationship between the race times and anthropometric variables, was used the Pearson correlation test. The somatotype dispersion distance and somatotype spatial distance were calculated among subgroups. One-way analysis of variance, the Wilcoxon test followed of Tukey post test, and correlation analysis were used with a significance level of p<0.05. Results: Somatotype with mesomorphy and ectomorphy dominance was exhibited by 100 m and 400 m athletes. Endomorphy was low in both groups, especially in 400m runners, who had more elongated body types than 100 m runners. When separately compared by athletic performance quartile, 100 m sprinters of better qualifications (G100-G1) had somatotype with dominant mesomorphy, whereas 400 m runners had somatotype with dominant ectomorphy. A significant correlation (r = -0.55, p=0.008) between calf circumference and 100 m race times was observed showing the importance of muscularity, whereas a significant correlation was found between height and 400 m race times (r = -0.53, p=0.02) showing the importance of linearity. Conclusion: Runners of 100 and 400 may show differences in physical characteristics, depending on the level of athletic performance. Anthropometric periodic evaluations may help in the training process of these athletes. However, more specific assessment parameters should be taken into account, because somatotype by itself has not power to predict whether an individual will succeed in racing speed
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The purpose of the present study is to identify the dermatoglyphic and somatotypic characteristics and the physical qualities of athletes from the under-17 State volleyball team, in Rio Grande do Norte, Brazil. The sample was composed of athletes, n = 14, aged 15.0 ± 0.88 years, weight (Kg) 58.3 ± 5.90 and height (cm) 169.4 ± 7.97, members of the referred team. For data collection Cummins & Midlo s (1942), o dermatoglyphic method and Heath & Carter s (1967) somatotypic method were used and to evaluate physical qualities, 2400m, 50m, Shuttle Run, abdominal , Sargent test and medicine-ball toss were performed. Fingerprints show that the group presents genetic predisposition for the following physical qualities: explosive force and velocity. As to somatotype, the group was endo-ectomorphic. At physical evaluation the group presented low Vo2 max values and reasonable levels of explosive force, local muscular endurance, agility and velocity. We conclude that: according to the dermatoglyphic model observed, the group needs training strategies to improve coordination and agility; somatotype reveals the necessity for reducing fat levels and increasing muscular mass; the evaluation of physical qualities demonstrates the need for better physical preparation. This study traces the profile of the under-17 volleyball player from Rio Grande do Norte, with respect to genetic and somatotypic aspects and physical qualities, which will serve as a parameter for future state teams
Resumo:
Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. The investigation of natural products is mandatory for the discovery of new targets for antifungal drugs development. This study aimed to determine the genotypes of 48 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. In addition, we investigated three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils. The expression of these virulence factors in vitro was also investigated in the presence of the crude extract of Eugenia uniflora. The genotype A was the most prevalent (30 isolates; 62.5%), followed by genotype C (15 isolates; 31.5%) and genotype B (3 isolates; 6.25%). When microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. All Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed higher ability to combat PMNs phagocytosis. We found a high rate of genotype C strains isolated from the oral cavity of this group of patients. The crude extract of E. uniflora inhibited proper hypha formation and phagocytosis by PMNs, but had no significant effect on phospholipase activity. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute for the better understanding of the pathogenesis and alternative therapeutics for oral candidiasis
Resumo:
The objective of this thesis is proposes a method for a mobile robot to build a hybrid map of an indoor, semi-structured environment. The topological part of this map deals with spatial relationships among rooms and corridors. It is a topology-based map, where the edges of the graph are rooms or corridors, and each link between two distinct edges represents a door. The metric part of the map consists in a set of parameters. These parameters describe a geometric figure which adapts to the free space of the local environment. This figure is calculated by a set of points which sample the boundaries of the local free space. These points are obtained with range sensors and with knowledge about the robot s pose. A method based on generalized Hough transform is applied to this set of points in order to obtain the geomtric figure. The building of the hybrid map is an incremental procedure. It is accomplished while the robot explores the environment. Each room is associated with a metric local map and, consequently, with an edge of the topo-logical map. During the mapping procedure, the robot may use recent metric information of the environment to improve its global or relative pose
Resumo:
The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
Cotton is a hydrofilic textile fiber and, for this reason, it changes its properties according to the environment changes. Moisture and Temperature are the two most important factors that lead a cotton Spinning sector and influence its quality. Those two properties can change the entire Spinning process. Understanding this, moisture and temperature must be kept under control when used during the Spinning process, once the environment is hot and dry, the cotton yarns absorb moisture and lose the minimal consistency. According to this information, this paper was developed testing four types of cotton yarns, one kind of cotton from Brazil and the others from Egypt. The yarns were exposed to different temperatures and moisture in five different tests and in each test, six samples that were examined through physical and mechanical tests: resistance, strength, tenacity, yarn´s hairness, yarn´s evenness and yarn´s twisting. All the analysis were accomplished at Laboratório de Mecânica dos Fluídos and at COATS Corrente S.A., where, it was possible to use the equipments whose were fundamental to develop this paper, such as the STATIMAT ME that measures strength, tenacity, Zweigler G566, that measure hairiness in the yarn, a skein machine and a twisting machine. The analysis revealed alterations in the yarn´s characteristics in a direct way, for example, as moisture and temperature were increased, the yarn´s strength, tenacity and hairness were increased as well. Having the results of all analysis, it is possible to say that a relatively low temperature and a high humidity, cotton yarns have the best performance
Resumo:
Fruits are rich sources of bioactive compounds, including phenolic compounds. Tropical fruit cultivation is an important productive segment in Brazilian Northeast. Its industrialization generates solid wastes as co-products, with potential environmental impact. Considering the recognized bioactive content of fruit and its derivatives, this research has the objective of investigating acerola (Malpighia glabra L.), cajá-umbu (Spondia ssp), jambolan (Syzygium cumini) and pitanga (Eugenia uniflora) dried wastes obtained by spouted bed drier. It was analyzed the physical-chemical composition, solubility and microphotographic aspect of these dried wastes. Besides this, it was also evaluated the bioactive content, antioxidant activity and inhibitory activity against aamylase and a-glycosidase enzymes of water and ethanol (70%, 80% e 100% v/v) extracts prepared from fruit dried wastes, as well as their possible correlations. The dried fruit wastes showed high phenolic (606.04 to 3074.6 mg GAE eq/100 g sample), anthocyanin (478.7 mg/100 g for jambolan) and ascorbic acid (2748.03 mg/100 g for acerola) contents, as well as high antioxidant DPPH activity (14.27 a 36.30 mg Trolox eq/g sample). The extracts exhibited moderate to high a-amylase inhibition (23.97% a 76.58%) and high α-glycosidase inhibition, which 99.32% peak was reached for ethanol 70% pitanga extracts. It was also observed great positive correlation between phenolic content and DPPH activity (0.97 for acerola), anthocyanin (0.95 for jambolan) and α- glycosidase inhibition (0.98 for acerola). The α-glycosidase inhibition also correlated well with the antioxidant activity for all fruit extracts. The results show that these dried fruit wastes are valuable material for further applications as functional ingredients
Resumo:
The dried beef is a food traditionally eaten by Northeastern and has an extensive trade in the city of Natal-RN. It is usually produced in an empirical manner, without any standardization in production. Characterized as partially dehydrated meat product, so that the activity of water present is not sufficient to prevent microbial growth, degradation or the production of microbial toxins. The guarantee that the market dried beef is to provide a quality product hygienic, microbiological, physicochemical and sensory stable and adequate for the safety and consumer satisfaction, which has been increasingly attracted to food with natural preservatives. Thus, the meat industries are replacing the current seasonings and natural preservatives for similar, with it without affecting the shelf life of products. Lactic acid has been used to meet these requirements. In this sense, this study aimed to evaluate the effect of lactic acid on the physico-chemical, microbiological and sensory, besides knowing the consumer profile of dried meat of the City of Natal / RN. The results demonstrated that the use of lactic acid in concentrations of 1% and 2% during the processing of dried meat, had statistically significant effect (p < 0.05) on the physico-chemical (pH and water activity) and consequently reduced the microbial count does not alter the taste of the new product developed. Regarding the results on the consumer profile, it was found that the majority of respondents (71.75%) did not observe the presence of the stamp of the Federal Inspection Service (SIF) to buy this meat food that 81.55% of consumers check the hygiene conditions of the site and handlers, however, a large proportion of respondents not concerned with the guarantee of origin of typical regional products featuring a hazard to food safety for consumers of the city of Natal-RN
Resumo:
Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment
Resumo:
This work targetet the caprine ice cream production added with probiotic bacteria Bifidobacterium animalis subsp. lactis. It is divided into two parts. In the first one, four caprine ice cream formulations were evaluated, in which it was used hydrogenated fat (F1 and F3) or fat substitute (F2 and F4) in two different flavors (F1 and F2, passion fruit, F3 and F4, guava). Statistical differences (p<0.05) were detected for their physical-chemical properties, mainly for total solids and fat, but no differences were observed for melting test results. When it went to sensory acceptance, all four ice cream formulations reached high acceptance indexes, mostly formulation F4, which was selected for further studies. In the second part, F4 formulation was prepared with the addition of probiotic bacteria Bifidobacterium animalis subsp. lactis. The growth kinetics was studied and it was observed that the cellular concentration peak was reached after four fermentation hours (10.14 log UFC/g). This time was selected for pre-fermentation procedure and posterior addition at ice cream syrup. In this part of the study, two experimental groups were evaluated: group G1, in which the probiotic addition occurred before the maturation step and group G2, which included a pre-fermentation step and probiotic addition after ice cream maturation. The physical-chemical properties of these two ice cream groups were similar, except for pH, which was higher for group G2 (p<0.05). G1 samples had superior melting rate (3.566 mL/min) and both groups presented microbiological and sanitary results in accordance to current Brazilian legislation. Also, G1 and G2 were considered sensory accepted due to their acceptance indexes higher than 70%. G1 and G2 sensory profiles were similar (p>0.05), and both ice cream samples exhibited high creaminess (6.76 to 6.91) and mouth melting sensation (6.53 to 6.67) scores, while low sandiness scores (0.85 to 0.86) were observed, positive characteristics for this kind of food product. During the first 24 hours after ice cream production, the population of B. animalis subsp. lactis decreased, reaching 7.15 e 6.92 log CFU/g for G1 and G2, respectively. Probiotic bacteria counts fluctuated in ice cream samples during the first 108 days at frozen storage, especially for G2 group. Decreased probiotic viability was observed for G1 samples during the first 35 days of frozen storage, mild variation between 35 and 63 days and stabilized counts were observed after this time. After 21 days at frozen storage, ice cream samples of G1 and G2 groups reached 1.2 x 109 and 1.3 x 109 CFU/portion, respectively. After 108 days under these storage conditions, the survival rate of B. animalis subsp. lactis was 94.26% and 81.10% for G1 and G2 samples, respectively. After simulation of gastroenteric conditions, G2 group reached 9.72 x 105 CFU/portion. Considering the current requirements of Brazilian legislation, which stipulates that functional foods must have minimum probiotic count between 108 and 109 CFU/portion and detectable probiotic bacteria after being submitted to gastroenteric conditions, it is concluded that the ice cream with the addition of Bifidobacterium animalis subsp. lactis made as shown in this work, can be considered as a dairy functional food