26 resultados para Boltzmann s H theorem
Resumo:
We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time
Resumo:
Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum
Resumo:
A linear chain do not present phase transition at any finite temperature in a one dimensional system considering only first neighbors interaction. An example is the Ising ferromagnet in which his critical temperature lies at zero degree. Analogously, in percolation like disordered geometrical systems, the critical point is given by the critical probability equals to one. However, this situation can be drastically changed if we consider long-range bonds, replacing the probability distribution by a function like . In this kind of distribution the limit α → ∞ corresponds to the usual first neighbor bond case. In the other hand α = 0 corresponds to the well know "molecular field" situation. In this thesis we studied the behavior of Pc as a function of a to the bond percolation specially in d = 1. Our goal was to check a conjecture proposed by Tsallis in the context of his Generalized Statistics (a generalization to the Boltzmann-Gibbs statistics). By this conjecture, the scaling laws that depend with the size of the system N, vary in fact with the quantitie
Resumo:
In this study, we investigated the role of routes and information attainment for the queenless ant species Dinoponera quadriceps foraging efficiency. Two queenless ant colonies were observed in an area of Atlantic secondary Forest at the FLONA-ICMBio of Nisia Floresta, in the state of Rio Grande do Norte, northeastern Brazil, at least once a week. In the first stage of the study, we observed the workers, from leaving until returning to the colony. In the second stage, we introduced a acrylic plate (100 x 30 x 0,8 cm) on a selected entrance of the nest early in the morning before the ants left the nest. All behavioral recordings were done through focal time and all occurence samplings. The recording windows were of 15 minutes with 1 minute interval, and 5 minute intervals between each observation window. Foraging was the main activity when the workers were outside the nest. There was a positive correlation between time outside the nest and distance travelled by the ants. These variables influenced the proportion of resource that was taken to the nest, that is, the bigger its proportion, the longer the time outside and distance travelled during the search. That proportion also influenced the time the worker remained in the nest before a new trip, the bigger the proportion of the item, the shorter was the time in the nest. During all the study, workers showed fidelity to the route and to the sectors in the home range, even when the screen was in the ant´s way, once they deviated and kept the route. The features of foraging concerning time, distance, route and flexibility to go astray by the workers indicate that decisions are made by each individual and are optimal in terms of a cost-benefit relation. The strategy chosen by queenless ants fits the central place foraging and marginal value theorem theories and demonstrate its flexibility to new informations. This indicates that the workers can learn new environmental landmarks to guide their routes
Resumo:
The intervalar arithmetic well-known as arithmetic of Moore, doesn't possess the same properties of the real numbers, and for this reason, it is confronted with a problem of operative nature, when we want to solve intervalar equations as extension of real equations by the usual equality and of the intervalar arithmetic, for this not to possess the inverse addictive, as well as, the property of the distributivity of the multiplication for the sum doesn t be valid for any triplet of intervals. The lack of those properties disables the use of equacional logic, so much for the resolution of an intervalar equation using the same, as for a representation of a real equation, and still, for the algebraic verification of properties of a computational system, whose data are real numbers represented by intervals. However, with the notion of order of information and of approach on intervals, introduced by Acióly[6] in 1991, the idea of an intervalar equation appears to represent a real equation satisfactorily, since the terms of the intervalar equation carry the information about the solution of the real equation. In 1999, Santiago proposed the notion of simple equality and, later on, local equality for intervals [8] and [33]. Based on that idea, this dissertation extends Santiago's local groups for local algebras, following the idea of Σ-algebras according to (Hennessy[31], 1988) and (Santiago[7], 1995). One of the contributions of this dissertation, is the theorem 5.1.3.2 that it guarantees that, when deducing a local Σ-equation E t t in the proposed system SDedLoc(E), the interpretations of t and t' will be locally the same in any local Σ-algebra that satisfies the group of fixed equations local E, whenever t and t have meaning in A. This assures to a kind of safety between the local equacional logic and the local algebras
Resumo:
The widespread growth in the use of smart cards (by banks, transport services, and cell phones, etc) has brought an important fact that must be addressed: the need of tools that can be used to verify such cards, so to guarantee the correctness of their software. As the vast majority of cards that are being developed nowadays use the JavaCard technology as they software layer, the use of the Java Modeling Language (JML) to specify their programs appear as a natural solution. JML is a formal language tailored to Java. It has been inspired by methodologies from Larch and Eiffel, and has been widely adopted as the de facto language when dealing with specification of any Java related program. Various tools that make use of JML have already been developed, covering a wide range of functionalities, such as run time and static checking. But the tools existent so far for static checking are not fully automated, and, those that are, do not offer an adequate level of soundness and completeness. Our objective is to contribute to a series of techniques, that can be used to accomplish a fully automated and confident verification of JavaCard applets. In this work we present the first steps to this. With the use of a software platform comprised by Krakatoa, Why and haRVey, we developed a set of techniques to reduce the size of the theory necessary to verify the specifications. Such techniques have yielded very good results, with gains of almost 100% in all tested cases, and has proved as a valuable technique to be used, not only in this, but in most real world problems related to automatic verification
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
A posição que a renomada estatí stica de Boltzmann-Gibbs (BG) ocupa no cenário cientifíco e incontestável, tendo um âmbito de aplicabilidade muito abrangente. Por em, muitos fenômenos físicos não podem ser descritos por esse formalismo. Isso se deve, em parte, ao fato de que a estatística de BG trata de fenômenos que se encontram no equilíbrio termodinâmico. Em regiões onde o equilíbrio térmico não prevalece, outros formalismos estatísticos devem ser utilizados. Dois desses formalismos emergiram nas duas ultimas décadas e são comumente denominados de q-estatística e k-estatística; o primeiro deles foi concebido por Constantino Tsallis no final da década de 80 e o ultimo por Giorgio Kaniadakis em 2001. Esses formalismos possuem caráter generalizador e, por isso, contem a estatística de BG como caso particular para uma escolha adequada de certos parâmetros. Esses dois formalismos, em particular o de Tsallis, nos conduzem também a refletir criticamente sobre conceitos tão fortemente enraizados na estat ística de BG como a aditividade e a extensividade de certas grandezas físicas. O escopo deste trabalho esta centrado no segundo desses formalismos. A k -estatstica constitui não só uma generalização da estatística de BG, mas, atraves da fundamentação do Princípio de Interação Cinético (KIP), engloba em seu âmago as celebradas estatísticas quânticas de Fermi- Dirac e Bose-Einstein; além da própria q-estatística. Neste trabalho, apresentamos alguns aspectos conceituais da q-estatística e, principalmente, da k-estatística. Utilizaremos esses conceitos junto com o conceito de informação de bloco para apresentar um funcional entrópico espelhado no formalismo de Kaniadakis que será utilizado posteriormente para descrever aspectos informacionais contidos em fractais tipo Cantor. Em particular, estamos interessados em conhecer as relações entre parâmetros fractais, como a dimensão fractal, e o parâmetro deformador. Apesar da simplicidade, isso nos proporcionará, em trabalho futuros, descrever estatisticamente estruturas mais complexas como o DNA, super-redes e sistema complexos
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Among several theorems which are taught in basic education some of them can be proved in the classroom and others do not, because the degree of difficulty of its formal proof. A classic example is the Fundamental Theorem of Algebra which is not proved, it is necessary higher-level knowledge in mathematics. In this paper, we justify the validity of this theorem intuitively using the software Geogebra. And, based on [2] we will present a clear formal proof of this theorem that is addressed to school teachers and undergraduate students in mathematics
Resumo:
In this paper we analyze the Euler Relation generally using as a means to visualize the fundamental idea presented manipulation of concrete materials, so that there is greater ease of understanding of the content, expanding learning for secondary students and even fundamental. The study is an introduction to the topic and leads the reader to understand that the notorious Euler Relation if inadequately presented, is not sufficient to establish the existence of a polyhedron. For analyzing some examples, the text inserts the idea of doubt, showing cases where it is not fit enough numbers to validate the Euler Relation. The research also highlights a theorem certainly unfamiliar to many students and teachers to research the polyhedra, presenting some very simple inequalities relating the amounts of edges, vertices and faces of any convex polyhedron, which clearly specifies the conditions and sufficient necessary for us to see, without the need of viewing the existence of the solid screen. And so we can see various polyhedra and facilitate understanding of what we are exposed, we will use Geogebra, dynamic application that combines mathematical concepts of algebra and geometry and can be found through the link http://www.geogebra.org