22 resultados para Biodegradável
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
Chitosan is a polymer biocompatibility and biodegradability widely used in drug delivery systems. The co-crosslinking of chitosan with sodium sulfate and genipin, to form particulate systems is related of making them more resistant to acidic pH and to modulate the release kinetics for the oral route. Triamcinolone is a glucocorticoid with anti-inflammatory and immunosuppressive actions. The nanoparticles were prepared by co-crosslinking and characterized for particle size, PDI, zeta potential, crosslinking degree, encapsulation rate, morphology, infrared spectroscopy, thermal analysis, release kinetics and cells studies. The nanoparticles were prepared initially without genipin with sodium sulphate and the particles parameters were monitored in function of different ratio of drug / polymer, different concentrations of sodium sulfate and polysorbate 80 and the drip mode of crosslinkers on polymers. After optimizing conditions, the chosen system parameters without genipin included mean diameter of 312.20 ± 5.70 nm, PDI 0.342 ± 0.013 and zeta potential of 20.18 ± 2.28 mV. The genipin was introduced into the system analyzing different concentrations (0.5, 1.0 and 2.0 mM) and crosslinking times (3, 6, 12 and 24 h). Evaluating crosslinking time with genipin (0.5 mM) it was showed that varying the genipin reaction time the systems size ranged from 235.1 to 334.4 nm, the PDI from 0.321 to 0.392 and zeta potential 20.92 to 30.39 mV. The crosslinking degree that coud vary from 14 to 30 %. Nanoparticles without genipina, 6 h and 24 h crosslinking time were dried by spray-drying method. Analysis by scanning electron micrograph (SEM) revealed that the microparticles showed spherical morphology. The encapsulation rate was 75 ± 2.3 % using validated HPLC methodology. The infrared analysis showed chemical interactions between the components of the formulation. Thermal analysis showed that systems with a higher degree of crosslinking had a higher thermal stability. On release kinetics, increasing the degree of crosslinking was able to decrease the concentration and rate of release of triamcinolone. In studies with liver cancer cells (HepG2) and colon (HT-29), the microparticulate prepared with triamcinolone and 24 h of crosslinking with genipin showed a potential for antitumor activity in hepatic cell line HepG2. Therefore, a new delivery system for triamcinolone on polymeric nanoparticles of chitosan cocrosslinked with genipin and sodium sulfate was obtained with hepatic antitumor potential.
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction
Resumo:
In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)
Resumo:
Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route