390 resultados para Compósitos de cimento
Resumo:
The gas migration during the cementing of wells is one of the main problems of oil wells engineering. Its occurrence can cause severe problems since shortly to loss of control of the well after cementation. Recently, 20/04/2010 In an accident of major proportions in the Gulf of Mexico, among other factors, faulty cementing operation provided the gas migration, causing the accident, in which 11 people died and 17 were injured occurred. Besides the serious consequences that can be caused by gas migration, remediation of the problem, which is made by injecting cement in damaged areas, usually involves additional costs and is not always effective. Therefore, preventing gas migration to be preferred. Some methods are used to prevent the migration of the pressurized gas as the annular space, application of pressure pulses, reducing the height of the cement column compressible cement pastes of low permeability, pastes and to control free filtered water, and binders of thixotropic cement expandable and flexible. Thus, the cement pastes used to prevent gas migration must meet the maximum these methods. Thus, this study aimed to formulate a cement paste to prevent gas migration, using the expanded vermiculite, and evaluate the behavior of the folder trials necessary for use in oil wells. Free water content, rheological properties, compressive strength, loss of liquid phase sedimentation of solids, specific weight, thickening time and gas migration: The following tests were performed. The results show that meets the specifications paste formulated for use in oil wells and the use of expanded vermiculite contribute to the absorption of free water, thixotropy and low density. The absorption of free water is proven to result in zero percentage test free water content, thixotropy is observed with the high value of the initial gel strength (Gi) in testing rheological properties and low density is proven in test weight specific
Resumo:
Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites
Resumo:
The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation
Resumo:
Nowadays, composite resins are the direct restorative materials more important in dental clinical performance, due to their versatility and aesthetic excellence. Bis-GMA (2,2-bis[4(2-hydroxy-3-metacryloxypropoxy)phenil]propane) is the base monomer more frequently used in restorative composite resins. However, this monomer presents some disadvantages, such as high viscosity and two aromatic rings in its structure that can promote allergic reactions to the humans. In this work, the main purpose was to synthesize new monomers from glycidyl methacrylate to use in dental restorative materials. Structural characterization of the monomers was carried out through FTIR and NMR 1H, and eight composites were produced from the new monomers, by addition of silane-treated alumino silicate particles (inorganic filler) and a photocuring system (camphorquinone and ethyl 4-dimethylaminebenzoate). The composites were analyzed by environmental scanning electronic microscopy and the water sorption and solubility, compressive strength and elastic modulus were determined. A commercial composite resin [Z100 (3M)] was used to comparison effect. The new composites presented general characteristics similar to the commercial ones; however, they didn t present the properties expected. This behavior was attributed to the lower degree of monomer reaction and to the granulometry and size distribution of the mineral filler in the polymeric matrix
Resumo:
This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors
Resumo:
In the present work it was developed originals alternatives of enveronmentally safe and economically viable destination of thermoset plastic residue from a button factory, which at presnte stores such residue tempor and in a way that is inconvenient to the atmosphere, a waiting safe solutions. As the residue is not recycleab and its burning leberates strongly aggressive gases, safe alternatives were researched. Inicially, ghe residue in incineration was performed in cement ovens with precise control ofe emission of gases, but it was proved inviable due to its low calorific power, as well as the liberation of free lead in the ashes. An original and feasible option was the residue confinemente in soil-ciment blocks, lohich resulted in blocks highly resistant to simple compression with structural block, and also a significant increase in thermal resistence. Was got up other options of original and important composites as: making of blocks for pré-moulded flagstone, internal coating of walls with plaster being obtained good texture results, replenish of ceramic blocks and blocks with cement, also implying in increase of thermal resistance. Besides these original and scientific contributions, the it was technologically contribution of defreadation with suggestions of the material using torch of thermal plasm; for this was projected, built, characterized and tested a torch to it shapes it being obtained exciting results for the development of this technology come back for ending destruction from all the types of inconvenient garbage to the atmosphere
Resumo:
Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature
Resumo:
Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue
Resumo:
Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT
Resumo:
Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
Brazil is a great ceramic raw materials productor because of the its big number of clay deposits, in various areas of the ceramic industry. Although, the majority of the natural reservations are unknown or not studied yet, so there is no scientific technical dates that can guide their usage and industrial application, as well as the racional and optimazed way of usage by the industrial sector. The state of Maranhão has a gigant mineral wealth as esmectite, bentonite, kaolin, clays, feldspates, marine salt, iron and others, but produce only products with small agregated value compared to the porcelanato, one of the most expensives ceramic cover tiles, the reason for that is the low water absorption (lower than 0,5%), beside present amazing tecnicals features, like mechanical resistence. The main objective of the work is to do the characterization of four clays, with the finallity of find an application by the results and develop formulations to produce porcelanato using these raw materials from Timon-MA. For this were made the raw materials characterization using X ray fluorecence; X ray diffraction; Differencial thermal analysis; Dilatometric analysis and Tecnological properties, planing three formulations that were sinterized at six different temperatures: 1150, 1170, 1190, 1210, 1230 and 1250ºC for 7 minutes. After the sinteratization, the samples were submitted to tension resistance analysis. Were attained two formulations with the requested properties to produce porcelanato
Resumo:
The ceramics industry in Piauí is nowadays with 55 industries where 11 are in Teresina which is the mainstream of the state, producing 55 million shingles; in which 10 % is of this production is wasted being sometimes thrown on the margins of rivers, roads and highways provoking an environmental degradation. The main goal of this work is to verify the potential of producing semi porous ceramic using grog of shingles, on the first part of this work bodies-of-proof were produced from a basic formula of an industry, doping it with 5 %, 10 %, 15 % and 20 % in mass and in the second part of this work some bodies-of-proof were produced from a formula where one raw material was substituted by 50 % of grog and another substituting it all by grog, bodies-of-proof made of a basic formula previously announced was used for experiment control.The grog and the raw materials were characterized by: particle size analysis , thermal differential analysis, X ray diffraction , X ray fluorescence, an thermal gravimetric analysis and rational analyses. The bodies-of-proof were sintetisized in an industrial oven obeying the normal cycle adopted by an industry, with peak temperatures of 1135 oC and a fast burning cycle of 25 minutes having as energetic fuel liquefied petroleum gas . The pieces that were obtained by this were submersed in rehearsed physics of: water absorption of, apparent specific mass, apparent porosity, lineal retraction, rupture tension to the flexural and dilatometry; mineralogical analysis for X ray diffraction; and microstructural for electronic microscope of sweeping. For all the formulas with addition of grog, superior priorities to the requested by the requirements for semi porous and for the formula to F2-2,5 superior priorities to standard formulas which justifies the incorporation of the shingles in mass for the semi porous ceramic
Resumo:
There are ores of clay in Piauí State that are used for red structural ceramics, which are naturally contaminated with calcareous vein. This is one thing that impedes its exploration in an adequate way, especially for tile production. The present work aims at verifying the influence of the calcareous contents in the technological structural ceramics area, seeking to determine a maximum permissible calcareous proportion/contents in the ceramic mass using the patterns of the local industry production. For the consecution of this paper, it was characterized the clay and calcareous material by FRX, DRX, TGA and DTA. It was also configurated by extrusion and burnt in the temperatures of 850°C, 900°C, 950°C and 1000°C pieces of the corpus with 0, 5, 10, 15 e 20% of calcareous proportion. After that, it was carried out technological samples of linear retraction, water absortion, apparent porosity, specific apparent mass and mechanic resistance. The results showed the possibility of using calcareous in the ceramic mass and in some cases the technological properties got better
Resumo:
Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding