175 resultados para refinería de petróleo
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products
Resumo:
Over exploitation of oil deposits on land onshore or offshore, there is simultaneous generation of waste water, known as produced water, which represents the largest waste stream in the production of crude oil. The relationship between the chemical composition of oil and water production and the conditions in which this process occurs or is favored are still poorly studied. The area chosen for the study has an important oil reserve and an important aquifer saturated with freshwater meteoric. The aim of this work is to study some chemical parameters in water produced for each reservoir zone of production in mature oil fields of Açu Formation, using the hydrochemical and statistical analysis to serve as a reference and be used as tools against the indicator ranges water producers in oil producing wells. Samples were collected from different wells in 6 different areas of production and were measured 50 parameters, which can be classified into three groups: anions, cations and physicochemical properties (considering only the parameters that generated values above detection limits in all samples). Through the characterization hydrochemistry observed an area of water and chlorinated sodium, chlorinated calcium or magnesium (mixed) in well water in different areas of Açu, by applying a statistical treatment, we obtained a discriminant function that distinguishes chemically production areas. Thus, it was possible to calculate the rate of correct classification of the function was 76.3%. To validate this model the accuracy rate was 86%
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The hydrolysis reaction in alkaline conditions of the commercial polymer poly(acrylamide-co-metacrylate of 3,5,5-trimethyl-hexane) called HAPAM, containing 0.75 % of hydrophobic groups, was carried out in 0.1 M NaCl and 0.25M NaOH solutions, varying the temperature and reaction time. The polymers were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), Elemental Analysis and Size Exclusion Chromatography (SEC). The values of the hydrolysis degree were obtained by 13C NMR. The viscosity of HAPAM and HAPAM-10N-R solutions was evaluated as a function of shear rate, ionic strength and temperature. At high polymer concentration (Cp), the viscosity of HAPAM solutions increased with the ionic strength and decreased with the temperature. The viscosity of HAPAM-10N-R solutions increased significantly in distilled water, due to repulsions between the carboxylate groups. At high Cp, with the increase of ionic strength and temperature, occurred a decrease of viscosity, due to mainly the high hydrolysis degree and the low amount of hydrophobic groups. These results indicated that the studied polymers have properties more suitable for the application in Enhanced Oil Recovery (EOR) in low salinity and moderate temperature reservoirs
Resumo:
Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes
Resumo:
This work aims to study the influence of two additives, the monomer, acrylamide and its polymer, polyacrylamide, solubilized in microemulsion systems and applied on enhanced oil recovery. By the microemulsion system obtained, it was chosen points into the phase diagram, presenting these compositions: 25%, 30%, 35% C/T; 2% Fo (fixed for all points) e 73%, 68% e 63% Fa, respectively. However, the monomer and the polymer were solubilized in these microemulsion points with 0.1%; 0.5%; 1% e 2% of concentration, ordering to check the concentration influence at the physicochemical properties (surface tension and rheology) of the microemulsion. Through the salinity study, was possible to observe that the concentrations of 1% and 2% of polymer made the solution became blurred, accordingly, the study of surface tension and rheology only was made for the concentrations of 0.1% e 0.5% of monomer and polymer, respectively. By the surface tension study it was observed that how the concentration of active matter (C/T) was increasing the surface tension was amending for each system, with or without additives. In the rheology study, as it increases the concentration of active matter increases both the viscosity of the microemulsion system (SME) with no additive, as the SME with polymer (AD2). After the entire study, it was chosen the lower point of active matter (25% C/T; 2% Fo e 73% Fa), plus additives in concentrations of 0.1% and 0.5% to be used on enhanced oil recovery. Assays were made on sandstone from Botucatu Formation, where after the tests, it was concluded that among the studied points, the point who showed the best efficiency of advanced shift was the microemulsion system + 0.5% AD2, with a recovery of 28% of oil in place and a total of 96,49%, while the other solution with 0.5% of polymer presented the worst result, with 14.1% of oil in place and 67,39% of efficiency of total displacement
Resumo:
The present work aims to study the theoretical level of some processes employed in the refining of petroleum fractions and tertiary recovery of this fluid. In the third chapter, we investigate a method of hydrogenation of oil fractions by QTAIM (Quantum Theory of Atoms in Molecules) and thermodynamic parameters. The study of hydrogenation reactions, and the stability of the products formed, is directly related to product improvement in the petrochemical refining. In the fourth chapter, we study the theoretical level of intermolecular interactions that occur in the process of tertiary oil recovery, or competitive interactions involving molecules of non-ionic surfactants, oil and quartz rock where oil is accumulated. Calculations were developed using the semiempirical PM3 method (Parametric Model 3). We studied a set of ten non-ionic surfactants, natural and synthetic origin. The study of rock-surfactant interactions was performed on the surface of the quartz (001) completely hydroxylated. Results were obtained energetic and geometric orientations of various surfactants on quartz. QTAIM was obtained through the analysis of the electron density of interactions, and thus, providing details about the formation of hydrogen bonds and hydrogen-hydrogen systems studied. The results show that the adsorption of ethoxylated surfactants in the rock surface occurs through the hydrogen bonding of the type CH---O, and surfactants derivatives of polyols occurs by OH---O bonds. For structures adsorption studied, the large distance of the surfactant to the surface together with the low values of charge density, indicate that there is a very low interaction, characterizing physical adsorption in all surfactants studied. We demonstrated that surfactants with polar group comprising oxyethylene units, showed the lowest adsorption onto the surface of quartz, unlike the derivatives of polyols
Resumo:
The separation oil-water by the use of flotation process is characterized by the involvement between the liquid and gas phases. For the comprehension of this process, it s necessary to analyze the physical and chemical properties command float flotation, defining the nature and forces over the particles. The interface chemistry has an important role on the flotation technology once, by dispersion of a gas phase into a liquid mixture the particles desired get stuck into air bubbles, being conduced to a superficial layer where can be physically separated. Through the study of interface interaction involved in the system used for this work, was possible to apply the results in an mathematical model able to determine the probability of flotation using a different view related to petroleum emulsions such as oil-water. The terms of probability of flotation correlate the collision and addition between particles of oil and air bubbles, that as more collisions, better is the probability of flotation. The additional probability was analyzed by the isotherm of absorption from Freundlich, represents itself the add probability between air bubbles and oil particles. The mathematical scheme for float flotation involved the injected air flow, the size of bubbles and quantity for second, the volume of float cell, viscosity of environment and concentration of demulsifier. The results shown that the float agent developed by castor oil, pos pH variation, salt quantity, temperature, concentration and water-oil quantity, presented efficient extraction of oil from water, up to 95%, using concentrations around 11 ppm of demulsifier. The best results were compared to other commercial products, codified by ―W‖ and ―Z‖, being observed an equivalent demulsifier power between Agflot and commercial product ―W‖ and superior to commercial product ―Z‖
Resumo:
During the storage of oil, sludge is formed in the bottoms of tanks, due to decantation, since the sludge is composed of a large quantity of oil (heavy petroleum fractions), water and solids. The oil sludge is a complex viscous mixture which is considered as a hazardous waste. It is then necessary to develop methods and technologies that optimize the cleaning process, oil extraction and applications in industry. Therefore, this study aimed to determine the composition of the oil sludge, to obtain and characterize microemulsion systems (MES), and to study their applications in the treatment of sludge. In this context, the Soxhlet extraction of crude oil sludge and aged sludge was carried out, and allowing to quantify the oil (43.9 % and 84.7 % - 13 ºAPI), water (38.7 % and 9.15 %) and solid (17.3 % and 6.15 %) contents, respectively. The residues were characterized using the techniques of X-ray fluorescence (XRF), Xray diffraction (XRD) and transmission Infrared (FT-IR). The XRF technique determined the presence of iron and sulfur in higher proportions, confirming by XRD the presence of the following minerals: Pyrite (FeS2), Pyrrhotite (FeS) and Magnetite (Fe3O4). The FT-IR showed the presence of heavy oil fractions. In parallel, twelve MES were prepared, combining the following constituents: two nonionic surfactants (Unitol L90 and Renex 110 - S), three cosurfactants (butanol, sec-butanol and isoamyl alcohol - C), three aqueous phase (tap water - ADT, acidic solution 6 % HCl, and saline solution - 3.5 % NaCl - AP) and an oil phase (kerosene - OP). From the obtained systems, a common point was chosen belonging to the microemulsion region (25 % [C+S] 5 % OP and AP 70 %), which was characterized at room temperature (25°C) by viscosity (Haake Rheometer Mars), particle diameter (Zeta Plus) and thermal stability. Mixtures with this composition were applied to oil sludge solubilization under agitation at a ratio of 1:4, by varying time and temperature. The efficiencies of solubilization were obtained excluding the solids, which ranged between 73.5 % and 95 %. Thus, two particular systems were selected for use in storage tanks, with efficiencies of oil sludge solubilization over 90 %, which proved the effectiveness of the MES. The factorial design delimited within the domain showed how the MES constituents affect the solubilization of aged oil sludge, as predictive models. The MES A was chosen as the best system, which solubilized a high amount of aged crude oil sludge (~ 151.7 g / L per MES)
Resumo:
Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.
Resumo:
This study investigates the chemical species produced water from the reservoir areas of oil production in the field of Monte Alegre (onshore production) with a proposal of developing a model applied to the identification of the water produced in different zones or groups of zones.Starting from the concentrations of anions and cátions from water produced as input parameters in Linear Discriminate Analysis, it was possible to estimate and compare the model predictions respecting the particularities of their methods in order to ascertain which one would be most appropriate. The methods Resubstitution, Holdout Method and Lachenbruch were used for adjustment and general evaluation of the built models. Of the estimated models for Wells producing water for a single production area, the most suitable method was the "Holdout Method and had a hit rate of 90%. Discriminant functions (CV1, CV2 and CV3) estimated in this model were used to modeling new functions for samples ofartificial mixtures of produced water (producedin our laboratory) and samples of mixtures actualproduced water (water collected inwellsproducingmore thanonezone).The experiment with these mixtures was carried out according to a schedule experimental mixtures simplex type-centroid also was simulated in which the presence of water from steam injectionin these tanks fora part of amostras. Using graphs of two and three dimensions was possible to estimate the proportion of water in the production area
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers