292 resultados para Retificadores de corrente eletrica
Resumo:
The greater part of monitoring onshore Oil and Gas environment currently are based on wireless solutions. However, these solutions have a technological configuration that are out-of-date, mainly because analog radios and inefficient communication topologies are used. On the other hand, solutions based in digital radios can provide more efficient solutions related to energy consumption, security and fault tolerance. Thus, this paper evaluated if the Wireless Sensor Network, communication technology based on digital radios, are adequate to monitoring Oil and Gas onshore wells. Percent of packets transmitted with successful, energy consumption, communication delay and routing techniques applied to a mesh topology will be used as metrics to validate the proposal in the different routing techniques through network simulation tool NS-2
Resumo:
The reconfiguration of a distribution network is a change in its topology, aiming to provide specific operation conditions of the network, by changing the status of its switches. It can be performed regardless of any system anomaly. The service restoration is a particular case of reconfiguration and should be performed whenever there is a network failure or whenever one or more sections of a feeder have been taken out of service for maintenance. In such cases, loads that are supplied through lines sections that are downstream of portions removed for maintenance may be supplied by the closing of switches to the others feeders. By classical methods of reconfiguration, several switches may be required beyond those used to perform the restoration service. This includes switching feeders in the same substation or for substations that do not have any direct connection to the faulted feeder. These operations can cause discomfort, losses and dissatisfaction among consumers, as well as a negative reputation for the energy company. The purpose of this thesis is to develop a heuristic for reconfiguration of a distribution network, upon the occurrence of a failure in this network, making the switching only for feeders directly involved in this specific failed segment, considering that the switching applied is related exclusively to the isolation of failed sections and bars, as well as to supply electricity to the islands generated by the condition, with significant reduction in the number of applications of load flows, due to the use of sensitivity parameters for determining voltages and currents estimated on bars and lines of the feeders directly involved with that failed segment. A comparison between this process and classical methods is performed for different test networks from the literature about networks reconfiguration
Resumo:
This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented
Resumo:
In this work, we propose a probabilistic mapping method with the mapped environment represented through a modified occupancy grid. The main idea of the proposed method is to allow a mobile robot to construct in a systematic and incremental way the geometry of the underlying space, obtaining at the end a complete environment map. As a consequence, the robot can move in the environment in a safe way, based on a confidence value of data obtained from its perceptive system. The map is represented in a coherent way, according to its sensory data, being these noisy or not, that comes from exterior and proprioceptive sensors of the robot. Characteristic noise incorporated in the data from these sensors are treated by probabilistic modeling in such a way that their effects can be visible in the final result of the mapping process. The results of performed experiments indicate the viability of the methodology and its applicability in the area of autonomous mobile robotics, thus being an contribution to the field
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
At present, the electricity generation through wind energy has an importance growing in the world, with the existence of very large plans for future wind power installation worldwide. Thus, the increasing the electricity generation through wind power requires, more and more, analysis of studies of interaction between wind parks and electric power systems. This paper has as purposes to implement equivalent models for synchronous wind generators to represent a wind park in ATP program and to check behavior of the models through simulations. Simulations with applications of faults were achieved to evaluate the behavior of voltages of system for each equivalent model, through comparisons between the results of models proposed, to verify if the differences obtained allows the adoption of the simplest model
Resumo:
Robots are present each time more on several areas of our society, however they are still considered expensive equipments that are restricted to few people. This work con- sists on the development of control techniques and architectures that make possible the construction and programming of low cost robots with low programming and building complexity. One key aspect of the proposed architecture is the use of audio interfaces to control actuators and read sensors, thus allowing the usage of any device that can produce sounds as a control unit of a robot. The work also includes the development of web ba- sed programming environments that allow the usage of computers or mobile phones as control units of the robot, which can be remotely programmed and controlled. The work also includes possible applications of such low cost robotic platform, including mainly its educational usage, which was experimentally validated by teachers and students of seve- ral graduation courses. We also present an analysis of data obtained from interviews done with the students before and after the use of our platform, which confirms its acceptance as a teaching support tool
Resumo:
The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID
Resumo:
Currently, one of the biggest challenges for the field of data mining is to perform cluster analysis on complex data. Several techniques have been proposed but, in general, they can only achieve good results within specific areas providing no consensus of what would be the best way to group this kind of data. In general, these techniques fail due to non-realistic assumptions about the true probability distribution of the data. Based on this, this thesis proposes a new measure based on Cross Information Potential that uses representative points of the dataset and statistics extracted directly from data to measure the interaction between groups. The proposed approach allows us to use all advantages of this information-theoretic descriptor and solves the limitations imposed on it by its own nature. From this, two cost functions and three algorithms have been proposed to perform cluster analysis. As the use of Information Theory captures the relationship between different patterns, regardless of assumptions about the nature of this relationship, the proposed approach was able to achieve a better performance than the main algorithms in literature. These results apply to the context of synthetic data designed to test the algorithms in specific situations and to real data extracted from problems of different fields
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
Resumo:
Ensuring the dependability requirements is essential for the industrial applications since faults may cause failures whose consequences result in economic losses, environmental damage or hurting people. Therefore, faced from the relevance of topic, this thesis proposes a methodology for the dependability evaluation of industrial wireless networks (WirelessHART, ISA100.11a, WIA-PA) on early design phase. However, the proposal can be easily adapted to maintenance and expansion stages of network. The proposal uses graph theory and fault tree formalism to create automatically an analytical model from a given wireless industrial network topology, where the dependability can be evaluated. The evaluation metrics supported are the reliability, availability, MTTF (mean time to failure), importance measures of devices, redundancy aspects and common cause failures. It must be emphasized that the proposal is independent of any tool to evaluate quantitatively the target metrics. However, due to validation issues it was used a tool widely accepted on academy for this purpose (SHARPE). In addition, an algorithm to generate the minimal cut sets, originally applied on graph theory, was adapted to fault tree formalism to guarantee the scalability of methodology in wireless industrial network environments (< 100 devices). Finally, the proposed methodology was validate from typical scenarios found in industrial environments, as star, line, cluster and mesh topologies. It was also evaluated scenarios with common cause failures and best practices to guide the design of an industrial wireless network. For guarantee scalability requirements, it was analyzed the performance of methodology in different scenarios where the results shown the applicability of proposal for networks typically found in industrial environments
Resumo:
The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented
Resumo:
A Quadrotor is an Unmanned Aerial Vehicle (UAV) equipped with four rotors distributed on a simple mechanical "X"form structure. The aim of this work is to build and stabilize a Quadrotor aircraft in the roll, pitch and yaw angles at a certain altitude. The stabilization control approach is based on a transformation in the input variables in order to perform a decoupled control. The proposed strategy is based on breaking the control problem into two hierarchical levels: A lower level, object of this work, maintains the desired altitude an angles of the vehicle while the higher level establishes appropriate references to the lower level, performing the desired movements. A hardware and software architecture was specially developed and implemented for an experimental prototype used to test and validate the proposed control approach
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison