59 resultados para temperatura, ozono, clima, aria, scenario
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Influência das condições ambientais no verdor da vegetação da caatinga frente às mudanças climáticas
Resumo:
The Caatinga biome, a semi-arid climate ecosystem found in northeast Brazil, presents low rainfall regime and strong seasonality. It has the most alarming climate change projections within the country, with air temperature rising and rainfall reduction with stronger trends than the global average predictions. Climate change can present detrimental results in this biome, reducing vegetation cover and changing its distribution, as well as altering all ecosystem functioning and finally influencing species diversity. In this context, the purpose of this study is to model the environmental conditions (rainfall and temperature) that influence the Caatinga biome productivity and to predict the consequences of environmental conditions in the vegetation dynamics under future climate change scenarios. Enhanced Vegetation Index (EVI) was used to estimate vegetation greenness (presence and density) in the area. Considering the strong spatial and temporal autocorrelation as well as the heterogeneity of the data, various GLS models were developed and compared to obtain the best model that would reflect rainfall and temperature influence on vegetation greenness. Applying new climate change scenarios in the model, environmental determinants modification, rainfall and temperature, negatively influenced vegetation greenness in the Caatinga biome. This model was used to create potential vegetation maps for current and future of Caatinga cover considering 20% decrease in precipitation and 1 °C increase in temperature until 2040, 35% decrease in precipitation and 2.5 °C increase in temperature in the period 2041-2070 and 50% decrease in precipitation and 4.5 °C increase in temperature in the period 2071-2100. The results suggest that the ecosystem functioning will be affected on the future scenario of climate change with a decrease of 5.9% of the vegetation greenness until 2040, 14.2% until 2070 and 24.3% by the end of the century. The Caatinga vegetation in lower altitude areas (most of the biome) will be more affected by climatic changes.
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
PEDRINI, Aldomar; SZOKOLAY, Steven. Recomendações para o desenvolvimento de uma ferramenta de suporte às primeiras decisões projetuais visando ao desempenho energético de edificações de escritório em clima quente. Ambiente Construído, Porto Alegre, v. 5, n. 1, p.39-54, jan./mar. 2005. Trimestral. Disponível em:
Resumo:
The objective of this study is to investigate if exist relationship between organizational culture and the organizational climate, having as research s locus three dairy industries in the Rio Grande do Norte State. As such, an exploratory-descriptive and conclusive-causal study, with a sample composed of 211 employees of all firms hierarchical levels was undertaken. By way the data collection, the employees personal characteristics, the predominant organizational culture profile and the predominant organizational climate in the industries researched were identified. In order to analyse the organizational culture, the Competing Value Model (CAMERON; QUINN, 2006), with adaptations by Santos (1998, 2000), was used. In order to analyse the organizational climate, the Organizational Climate Measurement Scale, proposed by Martins (et al., 2004, 2008), with modifications, was used. The data were submitted to quantitative statistical analyses, firstly to the set of firms and afterwards to the firms alone, that permitted arrival to the following conclusions: the cultural profiles was met in a balanced way in the researched organizations, with emphasis to clan culture and market culture profiles; the researched organizations have a good organizational climate, based in the Martins (2008) classification, with emphasis to boss and organization s support and physical comfort , being these factors coherent whit the clan culture profile; the personal variables are correlated with the cultural profiles and with the organizational climate factors, however, each organization show its singular form of relation; and the cultural profiles showed influence on organizational climate factors. Thus, the results permitted to conclude that there are relations between the cultural profiles and the organizational climate factors in the researched organizations
Resumo:
The present research concerns about outdoor s thermal comfort conditions in hot-humid climate cities, understanding that life quality is a result of the urban object s type built for the human being in an environment with specific climate and morphological characteristics. It is presented as object of study the correlation between the neighborhood Renascença II s microclimate in São Luis /MA-Brazil, hot-humid climate city, and its urban morphological changes. As well as the thermal comfort s satisfaction level of its outdoor users. The research has as general goal to diagnosis the way these transformations caused by the urbanization influence the Renascença II s microclimate, identifying critical spots of the studied area, in order to contribute with land use recommendations based on bioclimatic architecture concepts and supply bases to urban design decisions adequate to the São Luis climate. It is presented as theoretical bases the urban climate, its concepts and elements. After that, the thermal comfort conditioners and its prediction models of thermal comfort sensation in outdoor are presented. The predictive models are presented along with bioclimatic assessment methods. Finally the use of bioclimatic assessment as an effective tool to identify places that need changes or preservation in order to seek environment quality. The applied methodology was based on the studies of Katzschner (1997), complemented by Oliveira s (1988) and Bustos Romero s (2001) studies that suggest an analysis and evaluation of maps of topography, buildings floors, land use, green areas and land covering, in order to overlap their characteristics and identify climate variable s measurements points; then a quantitative analysis of the climate variables (air temperature and humidity, wind speed and direction) of the chosen points takes place. It was perceived that Renaissance II has no permanence areas as squares or parks, its outdoor has little vegetation and presets high land impermeability and built density levels. The majority of the people interviewed said that was comfortable in a range of air temperature between 27,28ºC and 30,71ºC. The elaboration of a neighborhood master plan is important, which defines strategies for improvement of the life quality of its inhabitants
Resumo:
This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost
Resumo:
This Masters Degree dissertation seeks to make a comparative study of internal air temperature data, simulated through the thermal computer application DesignBuilder 1.2, and data registered in loco through HOBO® Temp Data Logger, in a Social Housing Prototype (HIS), located at the Central Campus of the Federal University of Rio Grande do Norte UFRN. The prototype was designed and built seeking strategies of thermal comfort recommended for the local climate where the study was carried out, and built with panels of cellular concrete by Construtora DoisA, a collaborator of research project REPESC Rede de Pesquisa em Eficiência Energética de Sistemas Construtivos (Research Network on Energy Efficiency of Construction Systems), an integral part of Habitare program. The methodology employed carefully examined the problem, reviewed the bibliography, analyzing the major aspects related to computer simulations for thermal performance of buildings, such as climate characterization of the region under study and users thermal comfort demands. The DesignBuilder 1.2 computer application was used as a simulation tool, and theoretical alterations were carried out in the prototype, then they were compared with the parameters of thermal comfort adopted, based on the area s current technical literature. Analyses of the comparative studies were performed through graphical outputs for a better understanding of air temperature amplitudes and thermal comfort conditions. The data used for the characterization of external air temperature were obtained from the Test Reference Year (TRY), defined for the study area (Natal-RN). Thus the author also performed comparative studies for TRY data registered in the years 2006, 2007 and 2008, at weather station Davis Precision Station, located at the Instituto Nacional de Pesquisas Espaciais INPE-CRN (National Institute of Space Research), in a neighboring area of UFRN s Central Campus. The conclusions observed from the comparative studies performed among computer simulations, and the local records obtained from the studied prototype, point out that the simulations performed in naturally ventilated buildings is quite a complex task, due to the applications limitations, mainly owed to the complexity of air flow phenomena, the influence of comfort conditions in the surrounding areas and climate records. Lastly, regarding the use of the application DesignBuilder 1.2 in the present study, one may conclude that it is a good tool for computer simulations. However, it needs some adjustments to improve reliability in its use. There is a need for continued research, considering the dedication of users to the prototype, as well as the thermal charges of the equipment, in order to check sensitivity
Resumo:
The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed
Resumo:
This research presents a study investigating the correlation between the environmental-physycal charcateristics of cities and the formation of its micro-climates. The study was conducted in the central area of Fortaleza characterized as a stable and consolidated area, where the city originated and currently faces serious problems in its urban dynamics. The points of measurements were determined by the elaboration and analysis of topography maps, height of buildings, land use, type of surface coating and vegetation, following the methodology of Katzschner (1997). A zoning map was then determined, according to common morphological characteristics of the 12 measurement points, which were based on a set of Romero s (2001) bioclimatic criteria. Air measurements, temperature, humidity, intensity and direction of winds were made in transect form in two different circuits in the study area, with six points of data collection in each area, in three different times: 6:00 am, 1:00pm and 7:00pm, during two periods of the year: August 2008 and March 2009. The results verified the influence of different environmental-physical types in the behavior of the climatic variables that were collected. A verticalização tão condenada em algumas situações se bem equilibrada e controlada pode reduzir as temperaturas do ar através do sombreamento dos espaços urbanos e possibilidade de maior permeabilidade a ventilação natural. The highest average air temperature and lower humidity were recorded at the point I at all times. This situation may have been in result of the high density, poor vegetation and extended paving of the ground. According to the results, it s clear the positive influence vegetation has on easing air temperature. Another indicator observed that areas with a greater variation in building heights tend to present decreased average air temperature. High rise structure, planned in accordance to urban air quality parameters, can reduce air temperatures by the shading of urban spaces and the possibility of greater penetration of natural ventilation
Resumo:
This master thesis introduces assessment procedures of daylighting performance in office rooms with shaded opening, recommendations for Natal-RN (Latitude 05,47' S, Longitude 35,11' W). The studies assume the need of window exterior shading in hot and humid climate buildings. The daylighting performance analyses are based on simulated results for three levels of illuminance (300,500 e 1000 lux) between 08h00 e 16h00, in rooms with 2,80 m height, 6 m large and 4 m, 6 m e 8 m depths, with a centered single opening, window wall ratio (20%, 40% e 60%), four orientations (North, East, South and West), and two types of sky (clear and partially cloudy). The sky characteristics were statistically determined based on hourly data from INPE-CRN solar and daylighting weather station. The lighting performance is resulted from dynamic computer simulation of 72 models using Troplux 3.12. The simulation results were assessed using a new parameter to quantify the use of interior daylighting, the useful percentage of daylight (PULN), which corresponds to the time fraction with satisfactory light, in accordance with the illuminance design. The passive zone depths are defined based on the PULN. Despite the failures of illuminance data from the weather station, the analyses ratified the high potential of daylighting for shaded rooms. The most influential variables on the lighting performance are the opening size and the illuminance of design, while the orientation is a little influential
Resumo:
This study was intended to investigate how the urban form has been influencing the changes in the climate of the city and make a correlation between the climate and the thermal sensation of the users of open spaces. The research was developed in the district of Petrópolis in Natal/ RN whose occupation has been almost consolidated. Among other reasons, this district was selected because it was planned considering the environmental aspects of comfort. The methodologies used are based on KATZSCHNER (1997) and OLIVEIRA (1988) studies, which suggest the drawing and analysis of maps of the area under study, including topography, height of the buildings, land use, green areas, and types of soil pavement, as well as measurement of the environmental variables: air temperature, relative humidity, direction and wind speed for a comparative study. As part of this, study local users of the district were interviewed about their thermal sensations in open spaces. For the statistical analysis, data was collected at 10 distinct points characterized by BUSTOS ROMERO (2002), being 8 within the district and 2 at different places (outside the district), at climatologic stations, in 3 periods (August/2000, January/2002 and June/2002), for 4 consecutive days for each measurement (from Sunday to Wednesday) at the time of lower and higher temperatures in the city, 6:00 am and 1:00 pm, respectively. At the same time interviews were carried out with users of the open spaces in the area, totaling 171 valid formularies. The urban form showed a rather leveled topography, great diversity of land use and height of the buildings, with the existence of an area mostly occupied with high buildings, very little green area and soil practically impermeable. The statistical analysis showed high temperature and humidity levels. The wind direction is predominantly Southeast with extremely variable speeds. When the data from this district is compared with the data from other areas in the city and its outskirt, it was observed that this district is hotter and less ventilated than the others; besides, most users said that they felt uncomfortable in the local environmental conditions. The results of the analysis generated a zoning for the district with recommendations for soil occupation. The profile of the user was defined regarding the thermal comfort, as well as some discussion about the comfort parameters, including the proposal of limiting areas of temperature and humidity for the thermal comfort in the open spaces
Resumo:
The present study deals with the relationship between urban vegetation and climate. The process whereby the Parque das Dunas a 1,172 ha green area in the city of Natal, State of Rio Grande do Norte exerts influence on the climate of the city is analyzed. The hypothesis on which the present work rests is that the green area referred to acts upon the climate of the city. The study is based on the analysis of climatic factors and elements of this green area and of the city of Natal. In order to give rise to final recommendations, a methodology grounded on a quantitative and qualitative standpoint has been used. The data were collected both within and without the limits of the Parque das Dunas area. Secondary and primary data resulting from the measurements taken by the researcher and her work group have been used. The aim was to contribute to the understanding of the influence of vegetation on the climate of a city having a warm and humid climate. A historical and environmental characterization of the Parque das Dunas was then sought. The local climatic factors and the elements of the climate have been studied within the scope of the city of Natal. A comparative study between the climatic elements within and without the limits of the Parque das Dunas area from the survey of technical data and the systematization of the information collected has been made, aiming at proposing a set of bioclimatic recommendations for the urban design in Natal. The results of such work allowed for the validation of the important role that the Parque das Dunas plays in the climate of Natal. This has led to the acknowledgement of the relevance of the green areas on the climate of cities. They bring about important benefits to the process of rendering agreeable the climate in the urban environment by providing pleasant microclimates that give a valuable contribution to the environmental comfort of urban nuclei having the same size of Natal
Resumo:
Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study
Resumo:
This master thesis aims to assess the influence of the design decisions on the energy building performance of hotels. The research is based on the integration of field study and computer simulation. Firstly, a detailed field study is carried out to identify the characteristics of hotels in Natal, Rio Grande do Norte. The items assessed are occupancies, light and equipment densities, types of air conditioning, total and monthly energy consumption, among others. A second and more comprehensive field study is carried out to identify the range of occurrence of architectural variables, with a larger number of buildings. A base case is modelled in VisualDOE, based on the first field study. Then, a first set of simulations are run to explore the sensitivity of the variables on the energy consumption. The results analyses were the base of a second set of simulations, which combined the most influential variables. The results of 384 models were assessed, and the impacts of design decisions were quantified. The study discusses tendencies and recommendations, as well as the methods advantages and disadvantages