26 resultados para fuzzy system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This works presents a proposal to make automatic the identification of energy thefts in the meter systems through Fuzzy Logic and supervisory like SCADA. The solution we find by to collect datas from meters at customers units: voltage, current, power demand, angles conditions of phasors diagrams of voltages and currents, and taking these datas by fuzzy logic with expert knowledge into a fuzzy system. The parameters collected are computed by fuzzy logic, in engineering alghorithm, and the output shows to user if the customer researched may be consuming electrical energy without to pay for it, and these feedbacks have its own membership grades. The value of this solution is a need for reduce the losses that already sets more than twenty per cent. In such a way that it is an expert system that looks for decision make with assertivity, and it looks forward to find which problems there are on site and then it wont happen problems of relationship among the utility and the customer unit. The database of an electrical company was utilized and the datas from it were worked by the fuzzy proposal and algorithm developed and the result was confirmed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims at the design, development and performance evaluation of a flat platform to capture incident solar radiation. The design and implementation of a fuzzy system for the efficient control of the solar tracking movement of the platform are also presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer, despite being one of the leading causes of death among women worldwide is a disease that can be cured if diagnosed early. One of the main techniques used in the detection of breast cancer is the Fine Needle Aspirate FNA (aspiration puncture by thin needle) which, depending on the clinical case, requires the analysis of several medical specialists for the diagnosis development. However, such diagnosis and second opinions have been hampered by geographical dispersion of physicians and/or the difficulty in reconciling time to undertake work together. Within this reality, this PhD thesis uses computational intelligence in medical decision-making support for remote diagnosis. For that purpose, it presents a fuzzy method to assist the diagnosis of breast cancer, able to process and sort data extracted from breast tissue obtained by FNA. This method is integrated into a virtual environment for collaborative remote diagnosis, whose model was developed providing for the incorporation of prerequisite Modules for Pre Diagnosis to support medical decision. On the fuzzy Method Development, the process of knowledge acquisition was carried out by extraction and analysis of numerical data in gold standard data base and by interviews and discussions with medical experts. The method has been tested and validated with real cases and, according to the sensitivity and specificity achieved (correct diagnosis of tumors, malignant and benign respectively), the results obtained were satisfactory, considering the opinions of doctors and the quality standards for diagnosis of breast cancer and comparing them with other studies involving breast cancer diagnosis by FNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes the design, the performance evaluation and a methodology for tuning the initial MFs parameters of output of a function based Takagi-Sugeno-Kang Fuzzy-PI controller to neutralize the pH in a stirred-tank reactor. The controller is designed to perform pH neutralization of industrial plants, mainly in units found in oil refineries where it is strongly required to mitigate uncertainties and nonlinearities. In addition, it adjusts the changes in pH regulating process, avoiding or reducing the need for retuning to maintain the desired performance. Based on the Hammerstein model, the system emulates a real plant that fits the changes in pH neutralization process of avoiding or reducing the need to retune. The controller performance is evaluated by overshoots, stabilization times, indices Integral of the Absolute Error (IAE) and Integral of the Absolute Value of the Error-weighted Time (ITAE), and using a metric developed by that takes into account both the error information and the control signal. The Fuzzy-PI controller is compared with PI and gain schedule PI controllers previously used in the testing plant, whose results can be found in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®