18 resultados para MODEL-DRIVEN DEVELOPMENT
Resumo:
Researches in Requirements Engineering have been growing in the latest few years. Researchers are concerned with a set of open issues such as: communication between several user profiles involved in software engineering; scope definition; volatility and traceability issues. To cope with these issues a set of works are concentrated in (i) defining processes to collect client s specifications in order to solve scope issues; (ii) defining models to represent requirements to address communication and traceability issues; and (iii) working on mechanisms and processes to be applied to requirements modeling in order to facilitate requirements evolution and maintenance, addressing volatility and traceability issues. We propose an iterative Model-Driven process to solve these issues, based on a double layered CIM to communicate requirements related knowledge to a wider amount of stakeholders. We also present a tool to help requirements engineer through the RE process. Finally we present a case study to illustrate the process and tool s benefits and usage
Resumo:
This thesis presents ⇡SOD-M (Policy-based Service Oriented Development Methodology), a methodology for modeling reliable service-based applications using policies. It proposes a model driven method with: (i) a set of meta-models for representing non-functional constraints associated to service-based applications, starting from an use case model until a service composition model; (ii) a platform providing guidelines for expressing the composition and the policies; (iii) model-to-model and model-to-text transformation rules for semi-automatizing the implementation of reliable service-based applications; and (iv) an environment that implements these meta-models and rules, and enables the application of ⇡SOD-M. This thesis also presents a classification and nomenclature for non-functional requirements for developing service-oriented applications. Our approach is intended to add value to the development of service-oriented applications that have quality requirements needs. This work uses concepts from the service-oriented development, non-functional requirements design and model-driven delevopment areas to propose a solution that minimizes the problem of reliable service modeling. Some examples are developed as proof of concepts
Resumo:
The development of interactive systems involves several professionals and the integration between them normally uses common artifacts, such as models, that drive the development process. In the model-driven development approach, the interaction model is an artifact that includes the most of the aspects related to what and how the user can do while he/she interacting with the system. Furthermore, the interactive model may be used to identify usability problems at design time. Therefore, the central problematic addressed by this thesis is twofold. In the first place, the interaction modeling, in a perspective that helps the designer to explicit to developer, who will implement the interface, the aspcts related to the interaction process. In the second place, the anticipated identification of usability problems, that aims to reduce the application final costs. To achieve these goals, this work presents (i) the ALaDIM language, that aims to help the designer on the conception, representation and validation of his interactive message models; (ii) the ALaDIM editor, which was built using the EMF (Eclipse Modeling Framework) and its standardized technologies by OMG (Object Management Group); and (iii) the ALaDIM inspection method, which allows the anticipated identification of usability problems using ALaDIM models. ALaDIM language and editor were respectively specified and implemented using the OMG standards and they can be used in MDA (Model Driven Architecture) activities. Beyond that, we evaluated both ALaDIM language and editor using a CDN (Cognitive Dimensions of Notations) analysis. Finally, this work reports an experiment that validated the ALaDIM inspection method
Resumo:
Aspect Oriented approaches associated to different activities of the software development process are, in general, independent and their models and artifacts are not aligned and inserted in a coherent process. In the model driven development, the various models and the correspondence between them are rigorously specified. With the integration of aspect oriented software development (DSOA) and model driven development (MDD) it is possible to automatically propagate models from one activity to another, avoiding the loss of information and important decisions established in each activity. This work presents MARISA-MDD, a strategy based on models that integrate aspect-oriented requirements, architecture and detailed design, using the languages AOV-graph, AspectualACME and aSideML, respectively. MARISA-MDD defines, for each activity, representative models (and corresponding metamodels) and a number of transformations between the models of each language. These transformations have been specified and implemented in ATL (Atlas Definition Language), in the Eclipse environment. MARISA-MDD allows the automatic propagation between AOV-graph, AspectualACME, and aSideML models. To validate the proposed approach two case studies, the Health Watcher and the Mobile Media have been used in the MARISA-MDD environment for the automatic generation of AspectualACME and aSideML models, from the AOV-graph model
Resumo:
This paper proposes a systematic approach to management of variability modelsdriven and aspects using the mechanisms of approaches Aspect-Oriented Software Development (AOSD) and Model-Driven Development (MDD). The main goal of the approach, named CrossMDA-SPL, is to improve the management(gerência), modularization and isolation ou separation of the variability of the LPSs of architecture in a high level of abstraction (model) at the design and implementing phases of development Software Product Lines (SPLs), exploiting the synergy between AOSD and MDD. The CrossMDA-SPL approach defines some artifacts basis for advance the separation clear in between the mandatory (bounden) and optional features in the architecture of SPL. The artifacts are represented by two models named: (i) core model (base domain) - responsible for specify the common features the all members of the SPL, and (ii) variability model - responsible for represent the variables features of SPL. In addition, the CrossMDA-SPL approach is composed of: (i) guidelines for modeling and representation of variability, (ii) CrossMDA-SPL services and process, and (iii) models of the architecture of SPL or product instance of SPL. The guidelines use the advantages of AOSD and MDD to promote a better modularization of the variable features of the architecture of SPL during the creation of core and variability models of the approach. The services and sub-processes are responsible for combination automatically, through of process of transformation between the core and variability models, and the generation of new models that represent the implementation of the architecture of SPL or a instance model of SPL. Mechanisms for effective modularization of variability for architectures of SPL at model level. The concepts are described and measured with the execution of a case study of an SPL for management systems of transport electronic tickets
Resumo:
Currently there are several aspect-oriented approaches that are related to different stages of software development process. These approaches often lack integration with each other and their models and artifacts are not aligned in a coherent process. The integration of Aspect-Oriented Software development (AOSD) and Model-Driven Development (MDD) enables automatic propagation of models from one phase to another, avoiding loss of important information and decisions established in each. This paper presents a model driven approach, called Marisa-AOCode, which supports the processing of detailed design artifacts to code in different Aspect-Oriented Programming languages. The approach proposed by Maris- AOCode defines transformation rules between aSideML, a modeling language for aspectoriented detailed design, and Metaspin, a generic metamodel for aspect-oriented programming languages. The instantiation of the generic metamodel (Metaspin) provided by the approach of Maris-AOCode is illustrated by the transformation of Metaspin for two languages: AspectLua and CaesarJ. We illustrate the approach with a case study based on the Health Watcher System
Resumo:
The use of middleware technology in various types of systems, in order to abstract low-level details related to the distribution of application logic, is increasingly common. Among several systems that can be benefited from using these components, we highlight the distributed systems, where it is necessary to allow communications between software components located on different physical machines. An important issue related to the communication between distributed components is the provision of mechanisms for managing the quality of service. This work presents a metamodel for modeling middlewares based on components in order to provide to an application the abstraction of a communication between components involved in a data stream, regardless their location. Another feature of the metamodel is the possibility of self-adaptation related to the communication mechanism, either by updating the values of its configuration parameters, or by its replacement by another mechanism, in case of the restrictions of quality of service specified are not being guaranteed. In this respect, it is planned the monitoring of the communication state (application of techniques like feedback control loop), analyzing performance metrics related. The paradigm of Model Driven Development was used to generate the implementation of a middleware that will serve as proof of concept of the metamodel, and the configuration and reconfiguration policies related to the dynamic adaptation processes. In this sense was defined the metamodel associated to the process of a communication configuration. The MDD application also corresponds to the definition of the following transformations: the architectural model of the middleware in Java code, and the configuration model to XML
Resumo:
Many challenges have been imposed on the middleware to support applications for digital TV because of the heterogeneity and resource constraints of execution platforms. In this scenario, the middleware must be highly configurable so that it can be customized to meet the requirements of applications and underlying platforms. This work aims to present the GingaForAll, a software product line developed for the Ginga - the middleware of the Brazilian Digital TV (SBTVD). GingaForAll adds the concepts of software product line, aspect orientation and model-driven development to allow: (i) the specification of the common characteristics and variables of the middleware, (ii) the modularization of crosscutting concerns - both mandatory and concepts variables - through aspects, (iii) the expression of concepts as a set of models that increase the level of abstraction and enables management of various software artifacts in terms of configurable models. This work presents the architecture of the software product line that implements such a tool and architecture that supports automatic customization of middleware. The work also presents a tool that implements the process of generating products GingaForAll
Resumo:
This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)
Resumo:
Aspect-Oriented Software Development (AOSD) is a technique that complements the Object- Oriented Software Development (OOSD) modularizing several concepts that OOSD approaches do not modularize appropriately. However, the current state-of-the art on AOSD suffers with software evolution, mainly because aspect definition can stop to work correctly when base elements evolve. A promising approach to deal with that problem is the definition of model-based pointcuts, where pointcuts are defined based on a conceptual model. That strategy makes pointcut less prone to software evolution than model-base elements. Based on that strategy, this work defines a conceptual model at high abstraction level where we can specify software patterns and architectures that through Model Driven Development techniques they can be instantiated and composed in architecture description language that allows aspect modeling at architecture level. Our MDD approach allows propagate concepts in architecture level to another abstraction levels (design level, for example) through MDA transformation rules. Also, this work shows a plug-in implemented to Eclipse platform called AOADLwithCM. That plug-in was created to support our development process. The AOADLwithCM plug-in was used to describe a case study based on MobileMedia System. MobileMedia case study shows step-by-step how the Conceptual Model approach could minimize Pointcut Fragile Problems, due to software evolution. MobileMedia case study was used as input to analyses evolutions on software according to software metrics proposed by KHATCHADOURIAN, GREENWOOD and RASHID. Also, we analyze how evolution in base model could affect maintenance on aspectual model with and without Conceptual Model approaches
Resumo:
The tracking between models of the requirements and architecture activities is a strategy that aims to prevent loss of information, reducing the gap between these two initial activities of the software life cycle. In the context of Software Product Lines (SPL), it is important to have this support, which allows the correspondence between this two activities, with management of variability. In order to address this issue, this paper presents a process of bidirectional mapping, defining transformation rules between elements of a goaloriented requirements model (described in PL-AOVgraph) and elements of an architectural description (defined in PL-AspectualACME). These mapping rules are evaluated using a case study: the GingaForAll LPS. To automate this transformation, we developed the MaRiPLA tool (Mapping Requirements to Product Line Architecture), through MDD techniques (Modeldriven Development), including Atlas Transformation Language (ATL) with specification of Ecore metamodels jointly with Xtext , a DSL definition framework, and Acceleo, a code generation tool, in Eclipse environment. Finally, the generated models are evaluated based on quality attributes such as variability, derivability, reusability, correctness, traceability, completeness, evolvability and maintainability, extracted from the CAFÉ Quality Model
Resumo:
The approach Software Product Line (SPL) has become very promising these days, since it allows the production of customized systems on large scale through product families. For the modeling of these families the Features Model is being widely used, however, it is a model that has low level of detail and not may be sufficient to guide the development team of LPS. Thus, it is recommended add the Features Model to other models representing the system from other perspectives. The goals model PL-AOVgraph can assume this role complementary to the Features Model, since it has a to context oriented language of LPS's, which allows the requirements modeling in detail and identification of crosscutting concerns that may arise as result of variability. In order to insert PL-AOVgraph in development of LPS's, this paper proposes a bi-directional mapping between PL-AOVgraph and Features Model, which will be automated by tool ReqSys-MDD. This tool uses the approach of Model-Driven Development (MDD), which allows the construction of systems from high level models through successive transformations. This enables the integration of ReqSys-MDD with other tools MDD that use their output models as input to other transformations. So it is possible keep consistency among the models involved, avoiding loss of informations on transitions between stages of development
Resumo:
The academic community and software industry have shown, in recent years, substantial interest in approaches and technologies related to the area of model-driven development (MDD). At the same time, continues the relentless pursuit of industry for technologies to raise productivity and quality in the development of software products. This work aims to explore those two statements, through an experiment carried by using MDD technology and evaluation of its use on solving an actual problem under the security context of enterprise systems. By building and using a tool, a visual DSL denominated CALV3, inspired by the software factory approach: a synergy between software product line, domainspecific languages and MDD, we evaluate the gains in abstraction and productivity through a systematic case study conducted in a development team. The results and lessons learned from the evaluation of this tool within industry are the main contributions of this work
Resumo:
Model-oriented strategies have been used to facilitate products customization in the software products lines (SPL) context and to generate the source code of these derived products through variability management. Most of these strategies use an UML (Unified Modeling Language)-based model specification. Despite its wide application, the UML-based model specification has some limitations such as the fact that it is essentially graphic, presents deficiencies regarding the precise description of the system architecture semantic representation, and generates a large model, thus hampering the visualization and comprehension of the system elements. In contrast, architecture description languages (ADLs) provide graphic and textual support for the structural representation of architectural elements, their constraints and interactions. This thesis introduces ArchSPL-MDD, a model-driven strategy in which models are specified and configured by using the LightPL-ACME ADL. Such strategy is associated to a generic process with systematic activities that enable to automatically generate customized source code from the product model. ArchSPLMDD strategy integrates aspect-oriented software development (AOSD), modeldriven development (MDD) and SPL, thus enabling the explicit modeling as well as the modularization of variabilities and crosscutting concerns. The process is instantiated by the ArchSPL-MDD tool, which supports the specification of domain models (the focus of the development) in LightPL-ACME. The ArchSPL-MDD uses the Ginga Digital TV middleware as case study. In order to evaluate the efficiency, applicability, expressiveness, and complexity of the ArchSPL-MDD strategy, a controlled experiment was carried out in order to evaluate and compare the ArchSPL-MDD tool with the GingaForAll tool, which instantiates the process that is part of the GingaForAll UML-based strategy. Both tools were used for configuring the products of Ginga SPL and generating the product source code
Resumo:
Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.