77 resultados para Compactação a quente
Resumo:
A combinação da Moldagem por Injeção de pós Metálicos (Metal Injection Moulding MIM) e o Método do Retentor Espacial (Space Holder Method - SHM) é uma técnica promissora para fabricação de peças porosas de titânio com porosidade bem definida como implantes biomédicos, uma vez que permite um alto grau de automatização e redução dos custos de produção em larga escala quando comparado a técnica tradicional (SHM e usinagem a verde). Contudo a aplicação desta técnica é limitada pelo fato que há o fechamento parcial da porosidade na superfície das amostras, levando ao deterioramento da fixação do implante ao osso. E além disso, até o presente momento não foi possível atingir condições de processamento estáveis quando a quantidade de retentor espacial excede 50 vol. %. Entretanto, a literatura descreve que a melhor faixa de porosidade para implantes de titânio para coluna vertebral está entre 60 - 65 vol. %. Portanto, no presente estudo, duas abordagens foram conduzidas visando a produção de amostras altamente porosas através da combinação de MIM e SHM com o valor constante de retentor espacial de 70 vol. % e uma porosidade aberta na superfície. Na primeira abordagem, a quantidade ótima de retentor espacial foi investigada, para tal foram melhorados a homogeneização do feedstock e os parâmetros de processo com o propósito de permitir a injeção do feedstock. Na segunda abordagem, tratamento por plasma foi aplicado nas amostras antes da etapa final de sinterização. Ambas rotas resultaram na melhoria da estabilidade dimensional das amostras durante a extração térmica do ligante e sinterização, permitindo a sinterização de amostras de titânio altamente porosas sem deformação da estrutura.
Resumo:
The Nb-Cu pseudoalloys present themselves as potential substitutes for the alloys from a well known system and already commercially applied, as the W-Cu alloys, used in applications such as heat sinks, electrical contacts and coils for the generation of high magnetic fields. Because it is an immiscible system, where there is mutual insolubility and low wettability of the liquid Cu on the Nb surface, the processing route used in this work was the Powder Metallurgy. Two Nb alloys were used, with additions of 10% and 20% in weight of Cu, and times of 20, 30 and 40 hours for the high energy milling of the starting powders. The milling evolution of the powders is presented through the characterization techniques, such as the LASER diffraction for particle size, XRD, SEM, EDS, DSC, dilatometry, TEM and chemical analysis. After the milling, portions of the loads were submitted to the annealing heat treatment. The process used for the samples consolidation was the hot pressing, which has been applied both on some milled powders samples, as on the annealed powders. Subsequent heat treatments were performed in the samples at temperatures of 1000ºC (solid phase) and 1100ºC (in the Cu liquid phase). All sets of consolidated samples, and also the two sets of the heat treated, were analyzed by XRD, SEM, EDS, density and Vickers microhardness. Moreover, other Nb powder samples with 10% and 20% in weight of Cu obtained by simple mechanical mixing, were consolidated, thermally treated and characterized with the same techniques applied to the others, and the results were compared among themselves. Despite the difficulty of consolidation and densification of the two pseudoalloys of the Nb-Cu system of this study, on the route that passes through the HEM, samples were obtained with densities around 90% of the theoretical density. And, on the processing route of which were only mixed, the values reached up to 97%. Therefore, in this work are also emphasized the processes that made possible these results.
Resumo:
PEDRINI, Aldomar; SZOKOLAY, Steven. Recomendações para o desenvolvimento de uma ferramenta de suporte às primeiras decisões projetuais visando ao desempenho energético de edificações de escritório em clima quente. Ambiente Construído, Porto Alegre, v. 5, n. 1, p.39-54, jan./mar. 2005. Trimestral. Disponível em:
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed
Resumo:
This master thesis aims to assess the influence of the design decisions on the energy building performance of hotels. The research is based on the integration of field study and computer simulation. Firstly, a detailed field study is carried out to identify the characteristics of hotels in Natal, Rio Grande do Norte. The items assessed are occupancies, light and equipment densities, types of air conditioning, total and monthly energy consumption, among others. A second and more comprehensive field study is carried out to identify the range of occurrence of architectural variables, with a larger number of buildings. A base case is modelled in VisualDOE, based on the first field study. Then, a first set of simulations are run to explore the sensitivity of the variables on the energy consumption. The results analyses were the base of a second set of simulations, which combined the most influential variables. The results of 384 models were assessed, and the impacts of design decisions were quantified. The study discusses tendencies and recommendations, as well as the methods advantages and disadvantages
Resumo:
This work presents results of field and laboratory tests using a Dynamic Cone Penetrometer, DCP. The tests were performed in order to evaluate the use of the equipment in sand for the control of bearing capacity of shallow foundations and fill compaction. For shallow foundations, the laboratory tests were conducted on sand placed in a metallic mould by the method of sand pluviation. Although the results show the inability to reproduce field conditions in the laboratory it was possible to verify the ability of the DCP to identify less resistant soil layers. The DCP tests for the analysis of compaction control were performed in a strong box with inside dimensions of 1,40 m x 1,40 m and 0,70 m in height. The soil layers were compacted with different densities though the use of a vibrating plate in order to obtain correlations between penetration index, DPI, and soil relative density. Other tests were also conducted to assess the influence of soil moisture on tests results. Among other findings, the results showed the great potential for the use of DCP to control the compaction of sand fills
Resumo:
This work presents the results, analyses and conclusions about a study carried out with objective of minimizing the thermal cracks formation on cemented carbide inserts during face milling. The main focus of investigation was based on the observation that milling process is an interrupted machining process, which imposes cyclic thermal loads to the cutting tool, causing frequent stresses changes in its superficial and sub-superficial layers. These characteristics cause the formation of perpendicular cracks from cutting edge which aid the cutting tool wear, reducing its life. Several works on this subject emphasizing the thermal cyclic behavior imposed by the milling process as the main responsible for thermal cracks formation have been published. In these cases, the phenomenon appears as a consequence of the difference in temperature experienced by the cutting tool with each rotation of the cutter, usually defined as the difference between the temperatures in the cutting tool wedge at the end of the cutting and idle periods (T factor). Thus, a technique to minimize this cyclic behavior with objective of transforming the milling in an almost-continuous process in terms of temperature was proposed. In this case, a hot air stream was applied into the idle period, during the machining process. This procedure aimed to minimize the T factor. This technique was applied using three values of temperature from the hot air stream (100, 350 e 580 oC) with no cutting fluid (dry condition) and with cutting fluid mist (wet condition) using the hot air stream at 580oC. Besides, trials at room temperature were carried out. Afterwards the inserts were analyzed using a scanning electron microscope, where the quantity of thermal cracks generated in each condition, the wear and others damages was analyzed. In a general way, it was found that the heating of the idle period was positive for reducing the number of thermal cracks during face milling with cemented carbide inserts. Further, the cutting fluid mist application was effective in reducing the wear of the cutting tools.
Resumo:
Despite the importance of the study of roots, little is known about the negative effects of soil compaction in the development of the Caatinga forest species. In this sense, the objective was to evaluate the initial growth of Mimosa caesalpiniifolia, Tabebuia caraiba and Erythina velutina in soil under varying levels of compression. The experiment was conducted in a greenhouse located at the Academic Unit Specialized in Agricultural Sciences, UFRN. To perform the experiment, was used Oxisoil of sandy loam texture, from forest trial Area Agricultural School of Jundiaí (EAJ) of the municipality of Macaíba-RN, in an experimental unit consisting of three overlapping PVC rings, 10 cm in diameter and 25 cm in height, with a central ring which has undergone compression. The experimental design was a randomized block with six replications, being tested four levels of soil compaction (1.35; 1.45; 1.60 and 1.80 kg.dm-³), evaluating the following variables: diameter, height, number of leaves, dry weight of shoot and root system in each layer of the vessels. Overall, the species M. caesalpiniifolia, T. caraiba and E. velutina had initial growth favored by treatment consists of uncompressed soil. The M. caesalpiniifolia and T. caraiba species proved relatively resistant to compaction of the soil does not undergo any significant reduction in root growth density equal to or less than 1.60 kg.dm-³, whereas E. velutina proved susceptible effects of soil compaction, with significant changes in root growth under soil densities equal to or greater than 1.45 kg.dm-³. Increased soil compaction caused the impediment to the expansion of taproot inside the experimental units, promoting the accumulation of roots in the upper layers of the soil for the studied species. The subsoil physical impediment changed the initial aerial growth of M. caesalpiniifolia and E. velutina, but did not influence the growth of air T. caraiba seedlings the tested compression levels.
Resumo:
Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.
Resumo:
Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.
Resumo:
PEDRINI, Aldomar; SZOKOLAY, Steven. Recomendações para o desenvolvimento de uma ferramenta de suporte às primeiras decisões projetuais visando ao desempenho energético de edificações de escritório em clima quente. Ambiente Construído, Porto Alegre, v. 5, n. 1, p.39-54, jan./mar. 2005. Trimestral. Disponível em:
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed
Resumo:
This master thesis aims to assess the influence of the design decisions on the energy building performance of hotels. The research is based on the integration of field study and computer simulation. Firstly, a detailed field study is carried out to identify the characteristics of hotels in Natal, Rio Grande do Norte. The items assessed are occupancies, light and equipment densities, types of air conditioning, total and monthly energy consumption, among others. A second and more comprehensive field study is carried out to identify the range of occurrence of architectural variables, with a larger number of buildings. A base case is modelled in VisualDOE, based on the first field study. Then, a first set of simulations are run to explore the sensitivity of the variables on the energy consumption. The results analyses were the base of a second set of simulations, which combined the most influential variables. The results of 384 models were assessed, and the impacts of design decisions were quantified. The study discusses tendencies and recommendations, as well as the methods advantages and disadvantages