19 resultados para Colostrum
Resumo:
The vitamins A and E are recognizably important in the initial stages of life and the newborn depends on nutritional adequacy of breast milk to meet their needs. These vitamins share routes of transport to the tissues and antagonistic effects have been observed in animals after supplementation with vitamin A. This study aimed to verify the effect of maternal supplementation with vitamin A megadose (200,000 UI) in the immediate post-partum on the concentration of alpha-tocopherol in colostrum. Healthy parturient women attended at a public maternity natalensis were recruited for the study and divided into two groups: control (n = 37) and supplemented (n = 36). Blood samples of colostrum and milk were collected until 12 hours after delivery. The women of the supplemented group was administered a retynil palmitate capsule and 24 hours after the first collection was obtained the 2nd sample of colostrum in two groups for analysis of retinol and alpha-tocopherol in milk. The mean retinol concentration of 50,7 ± 14,4 μg/dL (Mean ± standard deviation) and alpha-tocopherol of 1217.4 ± 959 mg/dL in the serum indicate the nutritional status biochemical appropriate. Supplementation with retynil palmitate resulted in increase not only retinol levels in the colostrum of the supplemented group (p = 0.002), but also the concentration of alpha-tocopherol (p = 0.04), changing from 1456.6 ± 1095.8 mg/dL to 1804.3 ± 1432.0 mg/dL (milk 0 and 24 respectively) compared to values in the control group, 984.6 ± 750.0 mg/dL and 1175.0 ± 730.8 mg/dL. The women had different responses to supplementation, influenced by baseline levels of retinol in colostrum. Those with previous by low levels of retinol in colostrum (<60 mg/dL) had increased the concentration of alpha-tocopherol in milk, whereas those with adequate levels (> 60 mg/dL), showed a reduction after supplementation. Supplementation with retinol palmitate is an important intervention in situations of high risk for vitamin A deficiency, when considering the need to maternal supplementation, since the excess vitamin can offer unfavorable interactions between nutrients essential for the mother-child group
Resumo:
Vitamin A is important in many essential body processes and its deficiency results in serious consequences for human health. Breast milk is the only source of this vitamin for children that are exclusively breastfed. Analysis of vitamin A in mother s milk is important because its concentration is related to maternal vitamin A status and to its ingestion by the mother during pregnancy. The aim of the present study was to assess the effect of maternal supplementation with retynil palmitate on the concentration of colostrum retinol under fasting and postprandial conditions. A total of 149 nursing mothers were recruited at the Januário Cicco Maternity School (Natal, Brazil) and allocated to two groups: Comparison (n = 69) and Test (n = 80). Blood and colostrum (in fasting and postprandial conditions) samples were collected up to 24hs after delivery. Serum retinol and colostrum levels were analyzed by high-performance liquid chromatography. The serum retinol level of 41.6 ± 12.7μg/dL (mean ± standard deviation) indicates adequate biochemical nutritional status. Colostrum retinol level was not influenced by serum retinol levels under any of the conditions established. In the colostrum, the retinol concentration in the unsupplemented test group was 67.3 ± 37.7 μg/dL under fasting and 80.3 ± 35.1 μg/dL under postprandial conditions (p<0.05), showing an increase of 19.3%. In the supplemented test group the values were 102.6 ± 57.3 μg/dL and 133.4 ± 78.3 μg/dL under fasting and postprandial, respectively (p<0.05), representing an increase of 30%. Considering that under fasting conditions most of the vitamin A transported to the milk originates in the retinol binding protein (RBP), the postprandial increase in colostrum retinol suggests a different transport mechanism of retinol to maternal milk from that performed by RBP. This situation becomes more evident under supplementation conditions.
Resumo:
Mothers with good vitamin A nutritional status during gestation and lactation are better able to nourish and protect their infant with maternal milk. Our hypothesis is that women with more serum retinol have more retinol and secretory immunoglobulin A in colostrum. 190 healthy puerperal women from a Brazilian public maternity were recruited and divided according to the cutoff point for serum retinol (30 μg/dL). A number of the women was supplemented with 200000 UI (60 mg) of retinyl palmitate in the immediate postpartum. Serum and colostrum were collected on the 1st day postpartum and colostrum again on the following day. Retinol (serum and colostrum) was analyzed by HPLC and SIgA (colostrum) by turbidimetry. The mothers presented with adequate biochemical indicators of nutritional status, according to serum retinol (44.6 μg/dL). There were significant differences (p= 0.0017 and p= 0.043, respectively) in retinol and SIgA levels in the colostrum of mothers with serum retinol > 30 μg/dL and < 30 μg/dL. The concentration of SIgA in the colostrum of non-supplemented mothers on the 1st day postpartum was 822.6 mg/dL, decreasing after 24 hours to 343.7 mg/dL. Supplemented mothers showed levels of SIgA in colostrum of 498.9 mg/dL on the 2nd day postpartum (p= 0.00006). The colostrum of women with good vitamin A nutritional status had more retinol and SIgA. Additionally, maternal supplementation increases the levels of SIgA in colostrum. The higher levels of SIgA on the 1st day postpartum showed the importance of early breastfeeding, given that it provides considerable immunological benefits to newborn infants
Resumo:
Vitamins A and E are essential nutrients in many biological processes, so that their adequate supply to the neonate is crucial. However, the bioavailability of vitamins may be limited by factors such as maternal nutritional status and the interaction between nutrients. This study aimed to investigate the effect of biochemical nutritional status of retinol and alpha-tocopherol levels in serum and colostrum. The study included 103 healthy puerperal women treated at the reference state maternity hospital (Natal-RN). Colostrum and serum samples were collected fasting in the immediate postpartum period and the analysis of retinol and alpha-tocopherol were determined by high-performance liquid chromatography. Specific cutoff points were adopted to characterize the biochemical status of vitamins A and E. For the total group of lactanting women the average concentration of retinol in serum (1.49 ± 0.4 μmol/L-1) and colostrum (2.18 ± 0.8 μmol/L-1), as well as alpha-tocopherol in serum (26.4 ± 8.0 μmol/L-1) and colostrum (26.1 ± 12.8 μmol/L-1), indicated adequate biochemical state. However, when evaluating the individual, was found a high prevalence of deficient serum (15%) and colostrum retinol (50%), and also alphatocopherol in serum (16%) and colostrum (61%). In women with serum retinol ≥ 1.05 μmol/L-1, found an inverse correlation between serum retinol and alpha-tocopherol in colostrum (p = 0.008, r = -0.28). This association was not observed in women with serum retinol <1.05 μmol/L-1. This situation demonstrates for the first time in humans that high physiological levels of serum retinol, without supplementation, can negatively influence the transfer of alpha-tocopherol in breast milk. Although the diagnosis of satisfactory nutritional status lactanting women showed high risk of subclinical deficiency of vitamins A and E from measurements made in the colostrum
Resumo:
Micronutrient deficiencies affect individuals mainly in developing countries, where vitamin A deficiency is a public health problem worldwide more worrying, especially in groups with increased physiological needs such as children and women of reproductive age. Vitamin A is supplied to the body through diet and has an important role in the visual process, cell differentiation, maintenance of epithelial tissue, reproductive and resistance to infection. The literature has demonstrated the relationship between vitamin A and diabetes, including gestational, leading to a risk to both mother and child. Gestational diabetes is any decrease in glucose tolerance of variable magnitude diagnosed each the first time during pregnancy, and may or may not persist after delivery. Insulin resistance during pregnancy is associated with placental hormones, as well as excess fat. Studies have shown that retinol transport protein produced in adipose tissue in high concentrations, this would be associated with resistance by interfering with insulin signaling. Therefore, this study aimed to evaluate the concentration of retinol in serum and colostrum from healthy and diabetic mothers in the immediate postpartum period. One hundred and nine parturient women were recruited, representing seventy-three healthy and thirty-six diabetic. Retinol was extracted and subsequently analyzed by High Performance Liquid Chromatography. Among the results highlights the mothers with gestational diabetes were older than mothers healthy, had more children and a higher prevalence of cases of cesarean section. Fetal macrosomia was present in 1.4% of healthy parturient women and in 22.2% of diabetic mothers. The maternal serum retinol showed an average of 39.7 ± 12.5 mg/dL for healthy parturients 35.12 ± 15 mg/dL for diabetic and showed no statistical difference. It was observed that in the group of diabetic had 17% vitamin A deficiency, whereas in the healthy group, only 4% of the women were deficentes. Colostrum, the concentration of retinol in healthy was 131.3 ± 56.2 mg/dL and 125.3 ± 41.9 mg/dL in diabetic did not differ statistically. This concentration of retinol found in colostrum provides approximately 656.5 mg/day for infants born to healthy mothers and 626.5 mg/day for infants of diabetic mothers, based on a daily consumption of 500 mL of breast milk and need Vitamin A 400 mg/day, thus reaching the requirement of the infant. The diabetic mothers showed significant risk factors and complications related to gestational diabetes. Although no 11 difference was found in serum retinol concentration and colostrum among women with and without gestational diabetes, the individual analysis shows that parturients women with diabetes are 4.9 times more likely to develop vitamin A deficiency than healthy parturients. However, the supply of vitamin A to the newborn was not committed in the presence of gestational diabetes
Resumo:
The Vitamin E consists of eight chemically homologous forms, designated alpha, beta, gamma and delta tocopherols and tocotrienols. Biologically, the alpha-tocopherol (α-TOH) is the most important. Commercially, are found two types of α-TOH a natural (RRR-alpha-tocopherol) and another synthetic (all-rac-alpha-tocopherol). Both forms are absorbed in the intestine, the liver is a preference in favor of forms 2R, due to transfer protein α-TOH. It has higher affinity to these stereoisomers. Newborns are considered high risk for vitamin E deficiency, mainly premature, these have breast milk as a food source for maintenance of serum α-TOH. Clinical signs such as thrombocytosis, hemolytic anemia, retrolental fibroplasia, intraventricular hemorrhage, bronchopulmonary dysplasia and spinocerebellar degeneration can be found in case of a low intake of α-TOH. Thus, maternal supplementation on postpartum with α-TOH can be an efficient way to increase levels of vitamin E in breast milk and thus the consequently increase the supply of micronutrient for the newborn. However, most studies with vitamin E supplementation have been conducted in animals and little is known about the effect of maternal supplementation in humans, as well as on its efficiency to increase levels of α-TOH in human milk, depending on the shape natural or synthetic. The study included 109 women, divided into three groups: control without supplementation (GC) (n=36), supplemented with natural capsule (GNAT) (n=40) and the synthetic capsule (GSINT) (n=33). Blood samples were collected for determination of maternal nutritional status, and colostrums at initial contact and after 24 hours post-supplementation. Analyses were performed by High Performance Liquid Chromatography. Values of α-TOH in serum below 499.6mg/dL were considered deficient. We used the Kruskal-Wallis test and Tukey test to confirm the increase of alpha-tocopherol in milk and efficiency of administered capsules. Daily consumption of α-TOH was based on daily intake of 500 mL of colostrum by the newborn and compared with the nutritional requirement for children from 0 to 6 months of age, 4 mg / day. The mothers had mean concentration of serum α-TOH in 1016 ± 52, 1236 ± 51 and 1083 ± 61 mg / dL, in CG, GNAT and GSINT respectively. There were no women with deficiiency. The GC did not change the concentrations of α-TOH in colostrum. While women supplemented with natural and synthetic forms increased concentrations of α-TOH colostrum in 57.6% and 39%, respectively. By comparing supplemented groups, it was observed a significant difference (p=0.04), the natural capsule more efficient than the synthetic, approximately 49.6%. Individually, 21.1% of the women provided below 4mg/day of α-TOH, after supplementation for this index declined4.1%. Thus, maternal supplementation postpartum raised the levels of alpha-tocopherol in colostrum, and increased efficiency was observed with the natural form
Resumo:
The mothers supplementation of vitamin A in the postpartum comes being a measure of intervention sufficiently used in the combat to the vitamin deficiency. The objective of this work was to evaluate the effect of the mother megadose of vitamin A under the levels of retinol in colostrum of postpartum mothers receiving care at the Januário Cicco Maternity School (MEJC), Natal, RN, as well as analyzing the influence of the maternal nutritional status in the reply to this supplementation. The study it was transversal type, with participation of 91 women in labor divided in group had participated of the study have controlled (44 women) and supplemented group (47 women). In the period of the morning blood and milk had been collected (milk 0h). After that a capsule of retinil palmitate of (200 000 UI or 60 mg) was supplied to the supplemented group. Another aliquot of colostro was after gotten 24h of the first collection (milk 24h). Retinol in milk and serum was quantified through the High Pressure Liquid Chromatography. The vitamin ingestion was evaluated by the questionnaire of frequency of alimentary consumption. The levels of serum retinol were 40.6 ± 10.6 and 35.9 ± 10.9 µg/dL in the groups controlled and supplemented, respectively. The women had presented a satisfactory average ingestion of vitamin (1492,4 µgRAE/dia), however with high prevalence of inadequate consumption (23%). Average values of retinol in milk 0h had been found and 24h of 93.5 ± 50.3 µg/dL and 99.1 ± 49.3 µg/dL has the group controlled group, respectively (p>0.05). After the supplementation had a significant increase in the levels of retinol of the supplemented group, being found values of 102.0 ± 56.0 µg/dL and 196.1 ± 74.0 µg/dL for milk 0h and 24h, respectively (p<0.0001). The women in labor presented different answers to the supplementation influenced for the basal levels of retinol in colostrum. It was possible to verify that women with deficient levels of retinol in milk had transferred more retinol to milk 24h than ones with adjusted levels, showing a percentage of reply equivalent to 326.1% and 86.5% of increase, respectively (p< 0.0001). Although the apparent normality found in the serum, the studied women are considered of risk to the development of the vitamin deficiency, and megadose was efficient in first 24h after the supplementation and wakes up with the mechanisms considered for transference of vitamin A to the milk
Resumo:
The tendency towards reduction of serum retinol levels, an existing placental barrier and the increase of retinol demand, are factors that place puerperal and lactating women at risk for Vitamin A deficiency. This micronutrient is an essential component of vital processes such as differentiation, cellular proliferation, and apoptosis. The objective of this study is to evaluate the effect of palmitate retinol supplementation (100.000UI) upon the milk retinollevels in puerperal women at the Januário Cicco University Maternity Hospital. This intervention has been adopted by the Ministry of Health since 2002. The longitudinal experiment was conducted with 106 puerperal women (68 comprised the supplemented group and 38 the control group). The High Performance Liquid Chromatography (HPLC) method was used to dose the retinol of the milk and serum samples, and the creamtocrit method to determine the milk fat levels. The retinol means for the colostrums were 99.0 ± 64.4 ug/dL and 160.1 ± 94,4 ug/dl 6 hours afier supplementation; 68.9 ± 33.5 ug/dL for the transitional milk, and 30.6 ± 15.2 ug/dL for the mature milk of the supplemented group. Ali the difterences between means were statistically significant. The difterence between retinol means in the control group were also significant, with these being greater in the colostrum, 88.6 ± 62.1 ug/dL with 61.9 ± 30.1 ug/dl in the transition milk and 32.9 ±32.9 ± 17.6 ug/dL in the mature milk. No significant difference was observed in the retinol means of the three types ot milk in the supplemented group when compared to their respective means in the control group. The prevalence in serum (35.1 % and 81.1 % for the cutting point 20 ug/dL, respectively) and in milk (51.4%) revealed vitamin A deficiency as a public health problem. COlostrum, transition, and mature milk tats varied similarly in the supplemented group (1,92 ± 0,96; 3,25 ± 1,27 and 3,31 ± 1,36 grams) and in the control group (1,87 ± 1,14; 3,25 ± 1,31 and 3,36 ± 1,67 grams), with an observed difference between the colostrum/transition milk and the colostrum/mature milk fats. No difference was observed between the groups. The study showed that the 200.000UI supplementation was not sufficient to increase the milk retinol to the desired levels nor to meet the demands of the mothers with deprived hepatic reserves. It is suggested that another similar dose be offered within 30 days or less, and within 2 months post-partum, while continual/y monitoring for possible pregnancy
Resumo:
Mothers with good vitamin A nutritional status during gestation and lactation are better able to nourish and protect their infant with maternal milk. Our hypothesis is that women with more serum retinol have more retinol and secretory immunoglobulin A in colostrum. 190 healthy puerperal women from a Brazilian public maternity were recruited and divided according to the cutoff point for serum retinol (30 μg/dL). A number of the women was supplemented with 200000 UI (60 mg) of retinyl palmitate in the immediate postpartum. Serum and colostrum were collected on the 1st day postpartum and colostrum again on the following day. Retinol (serum and colostrum) was analyzed by HPLC and SIgA (colostrum) by turbidimetry. The mothers presented with adequate biochemical indicators of nutritional status, according to serum retinol (44.6 μg/dL). There were significant differences (p= 0.0017 and p= 0.043, respectively) in retinol and SIgA levels in the colostrum of mothers with serum retinol > 30 μg/dL and < 30 μg/dL. The concentration of SIgA in the colostrum of non-supplemented mothers on the 1st day postpartum was 822.6 mg/dL, decreasing after 24 hours to 343.7 mg/dL. Supplemented mothers showed levels of SIgA in colostrum of 498.9 mg/dL on the 2nd day postpartum (p= 0.00006). The colostrum of women with good vitamin A nutritional status had more retinol and SIgA. Additionally, maternal supplementation increases the levels of SIgA in colostrum. The higher levels of SIgA on the 1st day postpartum showed the importance of early breastfeeding, given that it provides considerable immunological benefits to newborn infants
Resumo:
The term vitamin E refers to a group of eight molecular compounds which differ in structure and bioavailability, and the RRR-alpha-tocopherol more biologically active form. The composition of vitamin E in breast milk undergoes variations during lactation, colostrum and milk richer in this micronutrient compared to transitional and mature milk. Newborns, especially premature infants are more susceptible to vitamin E deficiency and to prevent the damage caused by this deficiency has been proposed supplementation of neonates with this micronutrient, however, there is no consensus to carry out this intervention. Thus, maternal supplementation with RRRalpha-tocopherol in the postpartum period can be a good alternative to try to raise the alpha-tocopherol levels in breast milk and therefore provide the premature newborn adequate amounts of vitamin E. This study to evaluate the effect of supplementation with 400 UI acetate RRR-alpha-tocopherol in women with premature births, on the concentration of alpha-tocopherol in breast milk colostrum, transitional and mature. The study included 89 healthy adult women were enrolled in the control group (n = 51) and supplemented group (n = 38). Blood samples were collected and milk colostrum soon after birth (0h milk) twenty-four hours, new rate of colostrum milk was collected (24h milk). The transitional and mature milk were collected in seven days (7d milk) and thirty days (30d milk) after delivery, respectively. Supplementation in the supplemented group was held after the collection of blood and 0h milk. The alpha-tocopherol analyzes were performed by high-performance liquid chromatography. Serum levels of alpha-tocopherol less than 516 μg/dL were considered indicative of nutritional deficiency. The average concentration of alphatocopherol in the serum of the control group mothers was 1159.8 ± 292.4 μg/dL and the supplemented group was 1128.3 ± 407.2 μg/dL (p = 0.281). All women had nutritional status in vitamin E suitable. In both groups, it was observed that the concentration of vitamin E in colostrum milk was higher compared to transitional and mature milk. In the supplemented group, the concentration of alpha-tocopherol in the milk increased 60 % after supplementation, from 1339.3 ± 414.2 μg/dL (0h milk) to 2234.7 ± 997.3 μg/dL (24h milk). While the control group values in colostrum 0h and colostrum 24h were similar (p = 0.681). In the control group the follow-on milk alphatocopherol value was 875.3 ± 292.4 μg/dL and in the group supplemented 1352.8 ± 542.3 μg/dL, an increase of 35% in the supplemented group compared to control (p <0.001). In mature milk alpha-tocopherol concentrations between the control group (426.6 ± 187.5 μg/dL) and supplemented (416.4 ± 214.2 μg/dL) were similar (p = 0.853). Only 24h milk supplemented group answered the nutritional requirement of alpha-tocopherol (4 mg/day) of the newborn. These results show that the transport of this micronutrient for milk occurs in a controlled and limited way. Thus, the native vitamin E supplementation increases the concentration of alpha-tocopherol in colostrum and milk and transition does not influence the concentration in mature milk. Only the increase in colostrum milk was sufficient to meet the nutritional requirement of premature newborns.
Resumo:
Vitamin A is an essential nutrient for many physiological processes such as growth and development, so that their adequate nutritional state is essential during pregnancy and lactation. Lactating women and children in breastfeeding are considered risk groups for vitamin A deficiency and some factors may increase the risk of vitamin A deficiency, such as prematurity. The aim of this work was to evaluate the vitamin A concentration in preterm and term lactating women and newborns by determination of retinol in maternal serum, umbilical cord serum and breast milk collected until 72 hours postpartum. 182 mothers were recruited and divided into preterm group (GPT; n = 118) and term group (GT, n = 64). In preterm group were also analyzed transition milk (7th-15th day; n = 68) and mature milk (30th-55th day; n = 46) samples. Retinol was analyzed by high-performance liquid chromatography (HPLC). Maternal retinol concentration in serum was 48.6 ± 12.3 µg/dL in GPT and 42.8 ± 16.3 µg/dL in the GT (p <0.01). Cord serum retinol was 20.4 ± 7.4 µg/dL in GPT and 23.2 ± 7.6 µg/dL in GT (p> 0.05). Among newborns, 43% of premature and 36% of term had low levels of serum retinol in umbilical cord (<20 µg/dL). In colostrum, the retinol in preterm and term groups had an average of 100.8 ± 49.0 µg/dL and 127.5 ± 65.1 µg/dL, respectively (p <0.05). The retinol average in preterm milk increased to 112.5 ± 49.7 µg/dL in transition phase and decreased to 57.2 ± 23.4 µg/dL in mature milk, differing significantly in all stages (p <0.05). When comparing with the recommendation of vitamin A intake (400 µg/day) GT colostrum reached the recommendation for infants, but in GPT the recommendation was not achieved at any stage. Mothers of premature infants had higher serum retinol than mothers at term; however, this was not reflected in serum retinol of umbilical cord, since premature had lower concentration of retinol. Such condition can be explained due to lower maternal physiological hemodilution and placental transfer of retinol to the fetus during preterm gestation. Comparison of retinol in colostrum showed lower concentrations in GPT; however the transition phase there was a significant increase of retinol content released by the mammary gland of preterm mothers. This situation highlights a specific physiological adaptation of prematurity, likely to more contribute to formation of hepatic reserves of retinol in premature infants.
Resumo:
The vitamins A and E are recognizably important in the initial stages of life and the newborn depends on nutritional adequacy of breast milk to meet their needs. These vitamins share routes of transport to the tissues and antagonistic effects have been observed in animals after supplementation with vitamin A. This study aimed to verify the effect of maternal supplementation with vitamin A megadose (200,000 UI) in the immediate post-partum on the concentration of alpha-tocopherol in colostrum. Healthy parturient women attended at a public maternity natalensis were recruited for the study and divided into two groups: control (n = 37) and supplemented (n = 36). Blood samples of colostrum and milk were collected until 12 hours after delivery. The women of the supplemented group was administered a retynil palmitate capsule and 24 hours after the first collection was obtained the 2nd sample of colostrum in two groups for analysis of retinol and alpha-tocopherol in milk. The mean retinol concentration of 50,7 ± 14,4 μg/dL (Mean ± standard deviation) and alpha-tocopherol of 1217.4 ± 959 mg/dL in the serum indicate the nutritional status biochemical appropriate. Supplementation with retynil palmitate resulted in increase not only retinol levels in the colostrum of the supplemented group (p = 0.002), but also the concentration of alpha-tocopherol (p = 0.04), changing from 1456.6 ± 1095.8 mg/dL to 1804.3 ± 1432.0 mg/dL (milk 0 and 24 respectively) compared to values in the control group, 984.6 ± 750.0 mg/dL and 1175.0 ± 730.8 mg/dL. The women had different responses to supplementation, influenced by baseline levels of retinol in colostrum. Those with previous by low levels of retinol in colostrum (<60 mg/dL) had increased the concentration of alpha-tocopherol in milk, whereas those with adequate levels (> 60 mg/dL), showed a reduction after supplementation. Supplementation with retinol palmitate is an important intervention in situations of high risk for vitamin A deficiency, when considering the need to maternal supplementation, since the excess vitamin can offer unfavorable interactions between nutrients essential for the mother-child group
Resumo:
Vitamin A is important in many essential body processes and its deficiency results in serious consequences for human health. Breast milk is the only source of this vitamin for children that are exclusively breastfed. Analysis of vitamin A in mother s milk is important because its concentration is related to maternal vitamin A status and to its ingestion by the mother during pregnancy. The aim of the present study was to assess the effect of maternal supplementation with retynil palmitate on the concentration of colostrum retinol under fasting and postprandial conditions. A total of 149 nursing mothers were recruited at the Januário Cicco Maternity School (Natal, Brazil) and allocated to two groups: Comparison (n = 69) and Test (n = 80). Blood and colostrum (in fasting and postprandial conditions) samples were collected up to 24hs after delivery. Serum retinol and colostrum levels were analyzed by high-performance liquid chromatography. The serum retinol level of 41.6 ± 12.7μg/dL (mean ± standard deviation) indicates adequate biochemical nutritional status. Colostrum retinol level was not influenced by serum retinol levels under any of the conditions established. In the colostrum, the retinol concentration in the unsupplemented test group was 67.3 ± 37.7 μg/dL under fasting and 80.3 ± 35.1 μg/dL under postprandial conditions (p<0.05), showing an increase of 19.3%. In the supplemented test group the values were 102.6 ± 57.3 μg/dL and 133.4 ± 78.3 μg/dL under fasting and postprandial, respectively (p<0.05), representing an increase of 30%. Considering that under fasting conditions most of the vitamin A transported to the milk originates in the retinol binding protein (RBP), the postprandial increase in colostrum retinol suggests a different transport mechanism of retinol to maternal milk from that performed by RBP. This situation becomes more evident under supplementation conditions.
Resumo:
Mothers with good vitamin A nutritional status during gestation and lactation are better able to nourish and protect their infant with maternal milk. Our hypothesis is that women with more serum retinol have more retinol and secretory immunoglobulin A in colostrum. 190 healthy puerperal women from a Brazilian public maternity were recruited and divided according to the cutoff point for serum retinol (30 μg/dL). A number of the women was supplemented with 200000 UI (60 mg) of retinyl palmitate in the immediate postpartum. Serum and colostrum were collected on the 1st day postpartum and colostrum again on the following day. Retinol (serum and colostrum) was analyzed by HPLC and SIgA (colostrum) by turbidimetry. The mothers presented with adequate biochemical indicators of nutritional status, according to serum retinol (44.6 μg/dL). There were significant differences (p= 0.0017 and p= 0.043, respectively) in retinol and SIgA levels in the colostrum of mothers with serum retinol > 30 μg/dL and < 30 μg/dL. The concentration of SIgA in the colostrum of non-supplemented mothers on the 1st day postpartum was 822.6 mg/dL, decreasing after 24 hours to 343.7 mg/dL. Supplemented mothers showed levels of SIgA in colostrum of 498.9 mg/dL on the 2nd day postpartum (p= 0.00006). The colostrum of women with good vitamin A nutritional status had more retinol and SIgA. Additionally, maternal supplementation increases the levels of SIgA in colostrum. The higher levels of SIgA on the 1st day postpartum showed the importance of early breastfeeding, given that it provides considerable immunological benefits to newborn infants
Resumo:
Vitamins A and E are essential nutrients in many biological processes, so that their adequate supply to the neonate is crucial. However, the bioavailability of vitamins may be limited by factors such as maternal nutritional status and the interaction between nutrients. This study aimed to investigate the effect of biochemical nutritional status of retinol and alpha-tocopherol levels in serum and colostrum. The study included 103 healthy puerperal women treated at the reference state maternity hospital (Natal-RN). Colostrum and serum samples were collected fasting in the immediate postpartum period and the analysis of retinol and alpha-tocopherol were determined by high-performance liquid chromatography. Specific cutoff points were adopted to characterize the biochemical status of vitamins A and E. For the total group of lactanting women the average concentration of retinol in serum (1.49 ± 0.4 μmol/L-1) and colostrum (2.18 ± 0.8 μmol/L-1), as well as alpha-tocopherol in serum (26.4 ± 8.0 μmol/L-1) and colostrum (26.1 ± 12.8 μmol/L-1), indicated adequate biochemical state. However, when evaluating the individual, was found a high prevalence of deficient serum (15%) and colostrum retinol (50%), and also alphatocopherol in serum (16%) and colostrum (61%). In women with serum retinol ≥ 1.05 μmol/L-1, found an inverse correlation between serum retinol and alpha-tocopherol in colostrum (p = 0.008, r = -0.28). This association was not observed in women with serum retinol <1.05 μmol/L-1. This situation demonstrates for the first time in humans that high physiological levels of serum retinol, without supplementation, can negatively influence the transfer of alpha-tocopherol in breast milk. Although the diagnosis of satisfactory nutritional status lactanting women showed high risk of subclinical deficiency of vitamins A and E from measurements made in the colostrum