10 resultados para phase rule one component
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Dirofilaria immitis (Leidy, 1856), an agent of heartworm disease, is an important parasite from both the veterinary standpoint and as a model to study human filariasis. It is a mosquito-borne filarial nematode which inhabits the right ventricle and pulmonary arteries of dogs. D. immitis is an important disease agent on Madeira Island with about 30% of dogs testing positive for this worm. Nevertheless, the vectors of this parasite in Madeira have never been studied, nor has the interaction between pathogen and vector, or the environmental variables that might influence heartworm transmission. Innate susceptibility to infection is only one component of vector competence, and field isolation of naturally infected mosquitoes has shown the capability of D. immitis to exploit a great diversity of vector species under natural conditions. The purpose of this work was to determine which mosquitoes are vectors of heartworm disease, the relation between population density and environment, and the association between immune response of the vector to the filarial parasite. Seasonal abundance of Culex theileri and Culex pipiens molestus was studied. Correlation and canonical correspondence analysis were performed using abundance data of these two species with selected weather variables, including mean temperature, relative humidity and accumulated precipitation. The most important factor determining Cx. theileri abundance was accumulated precipitation, while Cx. pipiens molestus abundance did not have any relationship with weather variables. Field studies were performed to verify whether Cx. theileri Theobald functions as a natural vector of D. immitis on Madeira Island, Portugal. Cx. theileri tested positive for D. immitis for the first time. The same study was made regarding Cx. p. molestus. Two abnormal L2 stage filarial worms were found in Malpighian tubules in field caught Cx. p. molestus. In the laboratory, two strains of Cx. p. molestus were studied for their susceptibility to D. immitis. None presented infective-stage larvae. Finally, because Cx. p. molestus is an autogenous mosquito, we evaluated the reproductive costs when this mosquito mounts an immune response against D. immitis in the absence of a blood meal. This mosquito showed an active immune response when inoculated intrathoracically with microfilariae (mf) of the heartworm. The ovaries from mosquitoes undergoing melanotic encapsulation developed more eggs than those which could not melanize the mf. This fact is contradictory with some previous studies of reproductive costs in Armigeres subalbatus and Ochlerotatus trivittatus, and it was the first time that an autogenous mosquito was used to study this subject.
Resumo:
In this study the effect of the cultivar on the volatile profile of five different banana varieties was evaluated and determined by dynamic headspace solid-phase microextraction (dHS-SPME) combined with one-dimensional gas chromatography–mass spectrometry (1D-GC–qMS). This approach allowed the definition of a volatile metabolite profile to each banana variety and can be used as pertinent criteria of differentiation. The investigated banana varieties (Dwarf Cavendish, Prata, Maçã, Ouro and Platano) have certified botanical origin and belong to the Musaceae family, the most common genomic group cultivated in Madeira Island (Portugal). The influence of dHS-SPME experimental factors, namely, fibre coating, extraction time and extraction temperature, on the equilibrium headspace analysis was investigated and optimised using univariate optimisation design. A total of 68 volatile organic metabolites (VOMs) were tentatively identified and used to profile the volatile composition in different banana cultivars, thus emphasising the sensitivity and applicability of SPME for establishment of the volatile metabolomic pattern of plant secondary metabolites. Ethyl esters were found to comprise the largest chemical class accounting 80.9%, 86.5%, 51.2%, 90.1% and 6.1% of total peak area for Dwarf Cavendish, Prata, Ouro, Maçã and Platano volatile fraction, respectively. Gas chromatographic peak areas were submitted to multivariate statistical analysis (principal component and stepwise linear discriminant analysis) in order to visualise clusters within samples and to detect the volatile metabolites able to differentiate banana cultivars. The application of the multivariate analysis on the VOMs data set resulted in predictive abilities of 90% as evaluated by the cross-validation procedure.
Resumo:
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima. The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.
Resumo:
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography–quadrupole mass spectrometry detection (GC–qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.
Resumo:
BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.
Resumo:
In this study the feasibility of different extraction procedures was evaluated in order to test their potential for the extraction of the volatile (VOCs) and semi-volatile constituents (SVOCs) from wines. In this sense, and before they could be analysed by gas chromatography–quadrupole first stage masss spectrometry (GC–qMS), three different high-throughput miniaturized (ad)sorptive extraction techniques, based on solid phase extraction (SPE), microextraction by packed sorbents (MEPS) and solid phase microextraction (SPME), were studied for the first time together, for the extraction step. To achieve the most complete volatile and semi-volatile signature, distinct SPE (LiChrolut EN, Poropak Q, Styrene-Divinylbenzene and Amberlite XAD-2) and MEPS (C2, C8, C18, Silica and M1 (mixed C8-SCX)) sorbent materials, and different SPME fibre coatings (PA, PDMS, PEG, DVB/CAR/PDMS, PDMS/DVB, and CAR/PDMS), were tested and compared. All the extraction techniques were followed by GC–qMS analysis, which allowed the identification of up to 103 VOCs and SVOCs, distributed by distinct chemical families: higher alcohols, esters, fatty acids, carbonyl compounds and furan compounds. Mass spectra, standard compounds and retention index were used for identification purposes. SPE technique, using LiChrolut EN as sorbent (SPELiChrolut EN), was the most efficient method allowing for the identification of 78 VOCs and SVOCs, 63 and 19 more than MEPS and SPME techniques, respectively. In MEPS technique the best results in terms of number of extractable/identified compounds and total peak areas of volatile and semi-volatile fraction, were obtained by using C8 resin whereas DVB/CAR/PDMS was revealed the most efficient SPME coating to extract VOCs and SVOCs from Bual wine. Diethyl malate (18.8 ± 3.2%) was the main component found in wine SPELiChrolut EN extracts followed by ethyl succinate (13.5 ± 5.3%), 3-methyl-1-butanol (13.2 ± 1.7%), and 2-phenylethanol (11.2 ± 9.9%), while in SPMEDVB/CAR/PDMS technique 3-methyl-1-butanol (43.3 ± 0.6%) followed by diethyl succinate (18.9 ± 1.6%), and 2-furfural (10.4 ± 0.4%), are the major compounds. The major VOCs and SVOCs isolated by MEPSC8 were 3-methyl-1-butanol (26.8 ± 0.6%, from wine total volatile fraction), diethyl succinate (24.9 ± 0.8%), and diethyl malate (16.3 ± 0.9%). Regardless of the extraction technique, the highest extraction efficiency corresponds to esters and higher alcohols and the lowest to fatty acids. Despite some drawbacks associated with the SPE procedure such as the use of organic solvents, the time-consuming and tedious sampling procedure, it was observed that SPELiChrolut EN, revealed to be the most effective technique allowing the extraction of a higher number of compounds (78) rather than the other extraction techniques studied.
Resumo:
A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.
Resumo:
The volatile composition of different apple varieties of Malus domestica Borkh. species from different geographic regions at Madeira Islands, namely Ponta do Pargo (PP), Porto Santo (PS), and Santo da Serra (SS) was established by headspace solid-phase microextraction (HS-SPME) procedure followed by GC-MS (GC-qMS) analysis. Significant parameters affecting sorption process such as fiber coating, extraction temperature,extractiontime,sampleamount,dilutionfactor,ionicstrength,anddesorption time,wereoptimizedanddiscussed.TheSPMEfibercoatedwith50/30 lmdivinylbenzene/carboxen/PDMS (DVB/CAR/PDMS) afforded highest extraction efficiency of volatile compounds, providing the best sensitivity for the target volatiles, particularly whenthesampleswereextractedat508Cfor30 minwithconstantmagneticstirring. A qualitative and semi-quantitative analysis between the investigated apple species has been established. It was possible to identify about 100 of volatile compounds amongpulp(46,45,and39),peel(64,60,and64),andentirefruit(65,43,and50)inPP, PS,andSSapples,respectively.Ethylesters,terpenes,andhigheralcoholswerefound tobethemostrepresentativevolatiles. a-Farnesene,hexan-1-olandhexyl2-methylbutyratewerethecompoundsfoundinthevolatileprofileofstudiedappleswiththelargestGCarea,representing,onaverage,24.71,14.06,and10.80%ofthetotalvolatilefractionfromPP,PS,andSSapples.InPPentireapple,themostabundantcompoundsidentified were a-farnesene (30.49%), the unknown compound m/z (69, 101, 157) (21.82%) andhexylacetate(6.57%).RegardingPSentireapplethemajorcompoundswere a-farnesene(16.87%),estragole(15.43%),hexan-1-ol(10.94),andE-2-hexenal(10.67).a-Farnesene(30.3%),hexan-1-ol(18.90%),2-methylbutanoicacid(4.7%),andpentan-1-ol(4.6%) werealsofoundasSSentireapplevolatilespresentinahigherrelativecontent.Principal component analysis (PCA) of the results clustered the apples into three groups according to geographic origin. Linear discriminant analysis (LDA) was performed in order to detect the volatile compounds able to differentiate the three kinds of apples investigated. The most important contributions to the differentiation of the PP, PS, and SS apples were ethyl hexanoate, hexyl 2-methylbutyrate, E,E-2,4-heptadienal, pethylstyrene,andE-2-hexenal.
Resumo:
The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry (GC–qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2 g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60 °C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C13 norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes—pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance.