10 resultados para Differenzial Imaging, Principal Component Analysis, esopianeti, SPHERE, IFS

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-six Madeira wine samples from Boal, Malvazia, Sercial and Verdelho white grape varieties were analyzed in order to estimate the free fraction of monoterpenols and C13 norisoprenoids (terpenoid compounds) using dynamic headspace solid phase micro-extraction (HS-SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS). The average values from three vintages (1998–2000) show that these wines have characteristic profiles of terpenoid compounds. Malvazia wines exhibits the highest values of total free monoterpenols, contrary to Verdelho wines which had the lowest levels of terpenoids but produced the highest concentration of farnesol. The use of multivariate analysis techniques allows establishing relations between the compounds and the varieties under investigation. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to the obtained matrix data. A good separation and classification power between the four groups as a function of their varietal origin was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boal, Malvasia, Sercial and Verdelho are the main white grape varieties used in Madeira wine production. To estimate the free fraction of varietal aroma compounds of these varieties, 39 samples of musts were analysed to determine their content of monoterpenols and C13 norisoprenoids (terpenoids), using dynamic headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. The r-values for linearity studies of the analytical method used, varied between 0.977 (nerolidol) and 0.999 (linalool). The repeatability for each compound varied between 2.5% (citronellol) and 11.8% (β-ionone). The mean values from three vintages (1998, 1999 and 2000) confirmed that these musts have differentiated contents of terpenoids. In opposition to Verdelho musts, Malvasia showed the highest free terpenoids content. In order to establish relations between the compounds and the varieties under investigation, principal component analysis and linear discriminant analysis were applied to the data, revealing a good separation and classification power between the four groups as a function of varietal origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study determines for the first time Na, K, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb contents in wines from the archipelagos of Madeira and Azores (Portugal). The greater part of the mean content for the different parameters fell within the ranges described in the literature, except for sodium whose higher content may be due to the effect of marine spray. ANOVA was used to establish the metals with significant differences in mean content between the wines from both archipelagos, between table and liquor wines of Madeira, and between wines of Pico and Terceira Islands from the Azores archipelago. Principal component analysis shows differences in the wines according to the wine-making process and/or the equipment employed. Stepwise linear discriminant analysis achieves a good classification and validation of wines according to the archipelago of origin, and the island in the case of Azores wines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The volatile composition of different apple varieties of Malus domestica Borkh. species from different geographic regions at Madeira Islands, namely Ponta do Pargo (PP), Porto Santo (PS), and Santo da Serra (SS) was established by headspace solid-phase microextraction (HS-SPME) procedure followed by GC-MS (GC-qMS) analysis. Significant parameters affecting sorption process such as fiber coating, extraction temperature,extractiontime,sampleamount,dilutionfactor,ionicstrength,anddesorption time,wereoptimizedanddiscussed.TheSPMEfibercoatedwith50/30 lmdivinylbenzene/carboxen/PDMS (DVB/CAR/PDMS) afforded highest extraction efficiency of volatile compounds, providing the best sensitivity for the target volatiles, particularly whenthesampleswereextractedat508Cfor30 minwithconstantmagneticstirring. A qualitative and semi-quantitative analysis between the investigated apple species has been established. It was possible to identify about 100 of volatile compounds amongpulp(46,45,and39),peel(64,60,and64),andentirefruit(65,43,and50)inPP, PS,andSSapples,respectively.Ethylesters,terpenes,andhigheralcoholswerefound tobethemostrepresentativevolatiles. a-Farnesene,hexan-1-olandhexyl2-methylbutyratewerethecompoundsfoundinthevolatileprofileofstudiedappleswiththelargestGCarea,representing,onaverage,24.71,14.06,and10.80%ofthetotalvolatilefractionfromPP,PS,andSSapples.InPPentireapple,themostabundantcompoundsidentified were a-farnesene (30.49%), the unknown compound m/z (69, 101, 157) (21.82%) andhexylacetate(6.57%).RegardingPSentireapplethemajorcompoundswere a-farnesene(16.87%),estragole(15.43%),hexan-1-ol(10.94),andE-2-hexenal(10.67).a-Farnesene(30.3%),hexan-1-ol(18.90%),2-methylbutanoicacid(4.7%),andpentan-1-ol(4.6%) werealsofoundasSSentireapplevolatilespresentinahigherrelativecontent.Principal component analysis (PCA) of the results clustered the apples into three groups according to geographic origin. Linear discriminant analysis (LDA) was performed in order to detect the volatile compounds able to differentiate the three kinds of apples investigated. The most important contributions to the differentiation of the PP, PS, and SS apples were ethyl hexanoate, hexyl 2-methylbutyrate, E,E-2,4-heptadienal, pethylstyrene,andE-2-hexenal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima. The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry (GC–qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2 g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60 °C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C13 norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes—pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance.