7 resultados para seemingly unrelated regressions

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aims to assess the empirical adherence of the permanent income theory and the consumption smoothing view in Latin America. Two present value models are considered, one describing household behavior and the other open economy macroeconomics. Following the methodology developed in Campbell and Schiller (1987), Bivariate Vector Autoregressions are estimated for the saving ratio and the real growth rate of income concerning the household behavior model and for the current account and the change in national cash ‡ow regarding the open economy model. The countries in the sample are considered separately in the estimation process (individual system estimation) as well as jointly (joint system estimation). Ordinary Least Squares (OLS) and Seemingly Unrelated Regressions (SURE) estimates of the coe¢cients are generated. Wald Tests are then conducted to verify if the VAR coe¢cient estimates are in conformity with those predicted by the theory. While the empirical results are sensitive to the estimation method and discount factors used, there is only weak evidence in favor of the permanent income theory and consumption smoothing view in the group of countries analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação visa investigar a estrutura de custos do setor aéreo doméstico brasileiro. A fim de realizar essa investigação com maior detalhamento, faz-se, respectivamente, nos capítulos 1 e 2, descrições histórica e econômica desse setor. Essa investigação permitirá dar uma resposta a polêmica sobre a quantidade de empresas que esse setor comporta; além disso, fornecerá indicações de políticas públicas, para que se possa fazer uma melhor avaliação de possíveis mudanças no comportamento das empresas aéreas existentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies around that try to verify the existence of regulatory risk look mainly at developed countries. Looking at regulatory risk in emerging market regulated sectors is no less important to improving and increasing investment in those markets. This thesis comprises three papers comprising regulatory risk issues. In the first Paper I check whether CAPM betas capture information on regulatory risk by using a two-step procedure. In the first step I run Kalman Filter estimates and then use these estimated betas as inputs in a Random-Effect panel data model. I find evidence of regulatory risk in electricity, telecommunications and all regulated sectors in Brazil. I find further evidence that regulatory changes in the country either do not reduce or even increase the betas of the regulated sectors, going in the opposite direction to the buffering hypothesis as proposed by Peltzman (1976). In the second Paper I check whether CAPM alphas say something about regulatory risk. I investigate a methodology similar to those used by some regulatory agencies around the world like the Brazilian Electricity Regulatory Agency (ANEEL) that incorporates a specific component of regulatory risk in setting tariffs for regulated sectors. I find using SUR estimates negative and significant alphas for all regulated sectors especially the electricity and telecommunications sectors. This runs in the face of theory that predicts alphas that are not statistically different from zero. I suspect that the significant alphas are related to misspecifications in the traditional CAPM that fail to capture true regulatory risk factors. On of the reasons is that CAPM does not consider factors that are proven to have significant effects on asset pricing, such as Fama and French size (ME) and price-to-book value (ME/BE). In the third Paper, I use two additional factors as controls in the estimation of alphas, and the results are similar. Nevertheless, I find evidence that the negative alphas may be the result of the regulated sectors premiums associated with the three Fama and French factors, particularly the market risk premium. When taken together, ME and ME/BE regulated sectors diminish the statistical significance of market factors premiums, especially for the electricity sector. This show how important is the inclusion of these factors, which unfortunately is scarce in emerging markets like Brazil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper confronts the Capital Asset Pricing Model - CAPM - and the 3-Factor Fama-French - FF - model using both Brazilian and US stock market data for the same Sample period (1999-2007). The US data will serve only as a benchmark for comparative purposes. We use two competing econometric methods, the Generalized Method of Moments (GMM) by (Hansen, 1982) and the Iterative Nonlinear Seemingly Unrelated Regression Estimation (ITNLSUR) by Burmeister and McElroy (1988). Both methods nest other options based on the procedure by Fama-MacBeth (1973). The estimations show that the FF model fits the Brazilian data better than CAPM, however it is imprecise compared with the US analog. We argue that this is a consequence of an absence of clear-cut anomalies in Brazilian data, specially those related to firm size. The tests on the efficiency of the models - nullity of intercepts and fitting of the cross-sectional regressions - presented mixed conclusions. The tests on intercept failed to rejected the CAPM when Brazilian value-premium-wise portfolios were used, contrasting with US data, a very well documented conclusion. The ITNLSUR has estimated an economically reasonable and statistically significant market risk premium for Brazil around 6.5% per year without resorting to any particular data set aggregation. However, we could not find the same for the US data during identical period or even using a larger data set. Este estudo procura contribuir com a literatura empírica brasileira de modelos de apreçamento de ativos. Dois dos principais modelos de apreçamento são Infrontados, os modelos Capital Asset Pricing Model (CAPM)e de 3 fatores de Fama-French. São aplicadas ferramentas econométricas pouco exploradas na literatura nacional na estimação de equações de apreçamento: os métodos de GMM e ITNLSUR. Comparam-se as estimativas com as obtidas de dados americanos para o mesmo período e conclui-se que no Brasil o sucesso do modelo de Fama e French é limitado. Como subproduto da análise, (i) testa-se a presença das chamadas anomalias nos retornos, e (ii) calcula-se o prêmio de risco implícito nos retornos das ações. Os dados revelam a presença de um prêmio de valor, porém não de um prêmio de tamanho. Utilizando o método de ITNLSUR, o prêmio de risco de mercado é positivo e significativo, ao redor de 6,5% ao ano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo tem como objetivo analisar o desempenho de vários modelos econométricos ao prever Inflação . Iniciamos o trabalho utilizando como base de comparação para todos os modelos a tradicional curva de Phillips que usa a taxa de desemprego como variável explicativa para diferenças de preço. Dentre os modelos analisados temos univariados e bivariados, sendo estes últimos uma curva de Phillips alternativa já que apenas sustitui a variável desemprego por outra variável macroeconômica. Além destes modelos também comparamos o desempenho de previsão de modelos que usam como covariadas uma combinação das previsões dos modelos anteriores (univariados e bivariados). O resultado deste estudo aponta a combinação de modelos por "ridge regression" como uma técnica - dentre as analisadas para combinação de previsões - de menor erro de previsão sempre; sendo alcançado pela combinação da média em apenas um dos casos analisados. No entanto, a combinação de previsões não apresentou melhor resultado que algumas das covariadas testadas em modelos bivariados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with evaluating value at risk estimates. It is well known that using only binary variables to do this sacrifices too much information. However, most of the specification tests (also called backtests) avaliable in the literature, such as Christoffersen (1998) and Engle and Maganelli (2004) are based on such variables. In this paper we propose a new backtest that does not realy solely on binary variable. It is show that the new backtest provides a sufficiant condition to assess the performance of a quantile model whereas the existing ones do not. The proposed methodology allows us to identify periods of an increased risk exposure based on a quantile regression model (Koenker & Xiao, 2002). Our theorical findings are corroborated through a monte Carlo simulation and an empirical exercise with daily S&P500 time series.