72 resultados para modelos de risco

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dentre os principais desafios enfrentados no cálculo de medidas de risco de portfólios está em como agregar riscos. Esta agregação deve ser feita de tal sorte que possa de alguma forma identificar o efeito da diversificação do risco existente em uma operação ou em um portfólio. Desta forma, muito tem se feito para identificar a melhor forma para se chegar a esta definição, alguns modelos como o Valor em Risco (VaR) paramétrico assumem que a distribuição marginal de cada variável integrante do portfólio seguem a mesma distribuição , sendo esta uma distribuição normal, se preocupando apenas em modelar corretamente a volatilidade e a matriz de correlação. Modelos como o VaR histórico assume a distribuição real da variável e não se preocupam com o formato da distribuição resultante multivariada. Assim sendo, a teoria de Cópulas mostra-se um grande alternativa, à medida que esta teoria permite a criação de distribuições multivariadas sem a necessidade de se supor qualquer tipo de restrição às distribuições marginais e muito menos as multivariadas. Neste trabalho iremos abordar a utilização desta metodologia em confronto com as demais metodologias de cálculo de Risco, a saber: VaR multivariados paramétricos - VEC, Diagonal,BEKK, EWMA, CCC e DCC- e VaR histórico para um portfólio resultante de posições idênticas em quatro fatores de risco – Pre252, Cupo252, Índice Bovespa e Índice Dow Jones

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trata da avaliação do desempenho de modelos alternativos de precificação de ações no mercado de capitais brasileiro. Testamos modelos de risco uni e multifatorial e um modelo comportamental baseado em características.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As teorias sobre risco sistemático iniciadas em 1932 com Knight sempre buscaram determinar variáveis que pudessem explicar e determinar o nível de risco sistemático de um sistema financeiro. Neste sentido, este estudo propôs-se a investigar as variáveis que possam determinar o nível de risco sistemático de um país, utilizando um modelo de mercado para estimação de betas e regressões com dados em painel sobre uma base de dados de janeiro de 1997 a setembro de 2008 para 40 países. Utilizou-se como variáveis, o PIB, inflação, câmbio, taxa real de juros e concentração de mercado. Verificou-se que o modelo apresenta indícios que as variáveis utilizadas podem ser consideradas como determinantes do risco sistemático e ainda, que o nível de concentração de um mercado acionário pode determinar o nível de risco sistemático de um país.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apresenta o método value at risk (VaR) para se mensurar o risco de mercado, sob diferentes abordagens. Analisa a série histórica do índice Bovespa no período de 1995 a 1996 por meio de testes econométricos de normalidade, autocorrelação dos retornos e raiz unitária. Comparo valor obtido a partir dos diferentes modelos de estimação de volatilidade propostos e verifica qual dos modelos foi o mais adequado para o caso estudado

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Há forte evidência que os retornos das séries financeiras apresentam caudas mais pesadas que as da distribuição normal, principalmente em mercados emergentes. No entanto, muitos modelos de risco utilizados pelas instituições financeiras baseiam-se em normalidade condicional ou não condicional, reduzindo a acurácia das estimativas. Os recentes avanços na Teoria de Valores Extremos permitem sua aplicação na modelagem de risco, como por exemplo, na estimação do Valor em Risco e do requerimento de capital. Este trabalho verifica a adequação de um procedimento proposto por McNeil e Frey [1999] para estimação do Valor em Risco e conseqüente requerimento de capital às principais séries financeiras de retornos do Brasil. Tal procedimento semi-paramétrico combina um modelo GARCH ajustado por pseudo máxima verossimilhança para estimação da volatilidade corrente com a Teoria de Valores Extremos para estimação das caudas da distribuição das inovações do modelo GARCH. O procedimento foi comparado através de backtestings com outros métodos mais comuns de estimação de VaR que desconsideram caudas pesadas das inovações ou a natureza estocástica da volatilidade. Concluiu-se que o procedimento proposto por McNeil e Frey [1999] mostrou melhores resultados, principalmente para eventos relacionados a movimentos negativos nos mercados . Futuros trabalhos consistirão no estudo de uma abordagem multivariada de grandes dimensões para estimação de VaR e requerimento de capital para carteiras de investimentos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Este trabalho aborda os fundamentos da relação entre a medida neutra a risco e o mundo físico, apresentando algumas metodologias conhecidas de transformação da medida de probabilidade associada a cada um destes dois contextos. Mostramos como titulos de crédito podem ser utilizados para a estimação da probabilidade de inadimplência de seus emissores, explicitando os motivos que fazem com que ela não reflita, em um primeiro momento, os dados observados historicamente. Utilizando dados de empresas brasileiras, estimamos a razão entre a probabilidade de default neutra a risco e a probabilidade de default real. Tais resultados, quando comparados com outros trabalhos similares, sugerem que a razão do prêmio de risco de empresas brasileiras possui valor maior do que a de empresas americanas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação analisa a influência de um conjunto de variáveis políticas na determinação dos ratings soberanos. Com efeito, contrário a estudo anterior publicado pelo IMF Working Paper Series, os resultados apontam para a significância estatística conjunta das variáveis políticas empregadas, ainda que controladas por indicadores econômicos largamente utilizados na literatura correspondente. O sucesso dos resultados baseia-se na utilização de novas variáveis visando captar o nível de desenvolvimento das instituições políticas, somada à ampla base de dados anualizados em painel envolvendo 79 países no período entre 1997 e 2003. Ademais, além da evidência do uso conjunto de variáveis políticas na determinação dos ratings soberanos, o tratamento econométrico dos dados em painel detectou a existência de heterogeneidade não-observada dos países da amostra, sendo esta correlacionada com as variáveis explicativas do modelo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using information on US domestic financial data only, we build a stochastic discount factor—SDF— and check whether it accounts for foreign markets stylized facts that escape consumption based models. By interpreting our SDF as the projection of a pricing kernel from a fully specified model in the space of returns, our results indicate that a model that accounts for the behavior of domestic assets goes a long way toward accounting for the behavior of foreign assets prices. We address predictability issues associated with the forward premium puzzle by: i) using instruments that are known to forecast excess returns in the moments restrictions associated with Euler equations, and; ii) by comparing this out-of-sample results with the one obtained performing an in-sample exercise, where the return-based SDF captures sources of risk of a representative set of developed and emerging economies government bonds. Our results indicate that the relevant state variables that explain foreign-currency market asset prices are also the driving forces behind U.S. domestic assets behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asset allocation decisions and value at risk calculations rely strongly on volatility estimates. Volatility measures such as rolling window, EWMA, GARCH and stochastic volatility are used in practice. GARCH and EWMA type models that incorporate the dynamic structure of volatility and are capable of forecasting future behavior of risk should perform better than constant, rolling window volatility models. For the same asset the model that is the ‘best’ according to some criterion can change from period to period. We use the reality check test∗ to verify if one model out-performs others over a class of re-sampled time-series data. The test is based on re-sampling the data using stationary bootstrapping. For each re-sample we check the ‘best’ model according to two criteria and analyze the distribution of the performance statistics. We compare constant volatility, EWMA and GARCH models using a quadratic utility function and a risk management measurement as comparison criteria. No model consistently out-performs the benchmark.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation goal is to quantify the tail risk premium embedded into hedge funds' returns. Tail risk is the probability of extreme large losses. Although it is a rare event, asset pricing theory suggests that investors demand compensation for holding assets sensitive to extreme market downturns. By de nition, such events have a small likelihood to be represented in the sample, what poses a challenge to estimate the e ects of tail risk by means of traditional approaches such as VaR. The results show that it is not su cient to account for the tail risk stemming from equities markets. Active portfolio management employed by hedge funds demand a speci c measure to estimate and control tail risk. Our proposed factor lls that void inasmuch it presents explanatory power both over the time series as well as the cross-section of funds' returns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nos últimos tempos, mensurar o Risco Operacional (RO) tornou-se o grande desafio para instituições financeiras no mundo todo, principalmente com a implementação das regras de alocação de capital regulatório do Novo Acordo de Capital da Basiléia (NACB). No Brasil, ao final de 2004, o Banco Central (BACEN) estabeleceu um cronograma de metas e disponibilizou uma equipe responsável pela adaptação e implementação dessas regras no sistema financeiro nacional. A Federação de Bancos Brasileiros (FEBRABAN) também divulgou recente pesquisa de gestão de RO envolvendo vários bancos. Todo esse processo trouxe uma vasta e crescente pesquisa e atividades voltadas para a modelagem de RO no Brasil. Em nosso trabalho, medimos o impacto geral nos banco brasileiros, motivado pelas novas regras de alocação de capital de RO envolvendo os modelos mais básicos do NACB. Também introduzimos um modelo avançado de mensuração de risco, chamado Loss Data Distribution (LDA), que alguns especialistas, provenientes do Risco de Mercado, convencionaram chamar de Value-at-Risk Operacional (VaR Operacional.). Ao final desse trabalho apresentamos um caso prático baseado na implementação do LDA ou VaR

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analisamos a previsibilidade dos retornos mensais de ativos no mercado brasileiro em um período de 10 anos desde o início do plano Real. Para analisarmos a variação cross-section dos retornos e explicarmos estes retornos em função de prêmios de risco variantes no tempo, condicionados a variáveis de estado macroeconômicas, utilizamos um novo modelo de apreçamento de ativos, combinando dois diferentes tipos de modelos econômicos, um modelo de finanças - condicional e multifatorial, e um modelo estritamente macroeconômico do tipo Vector Auto Regressive. Verificamos que o modelo com betas condicionais não explica adequadamente os retornos dos ativos, porém o modelo com os prêmios de risco (e não os betas) condicionais, produz resultados com interpretação econômica e estatisticamente satis fatórios

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Os modelos hazard, também conhecidos por modelos de tempo até a falência ou duração, são empregados para determinar quais variáveis independentes têm maior poder explicativo na previsão de falência de empresas. Consistem em uma abordagem alternativa aos modelos binários logit e probit, e à análise discriminante. Os modelos de duração deveriam ser mais eficientes que modelos de alternativas discretas, pois levam em consideração o tempo de sobrevivência para estimar a probabilidade instantânea de falência de um conjunto de observações sobre uma variável independente. Os modelos de alternativa discreta tipicamente ignoram a informação de tempo até a falência, e fornecem apenas a estimativa de falhar em um dado intervalo de tempo. A questão discutida neste trabalho é como utilizar modelos hazard para projetar taxas de inadimplência e construir matrizes de migração condicionadas ao estado da economia. Conceitualmente, o modelo é bastante análogo às taxas históricas de inadimplência e mortalidade utilizadas na literatura de crédito. O Modelo Semiparamétrico Proporcional de Cox é testado em empresas brasileiras não pertencentes ao setor financeiro, e observa-se que a probabilidade de inadimplência diminui sensivelmente após o terceiro ano da emissão do empréstimo. Observa-se também que a média e o desvio-padrão das probabilidades de inadimplência são afetados pelos ciclos econômicos. É discutido como o Modelo Proporcional de Cox pode ser incorporado aos quatro modelos mais famosos de gestão de risco .de crédito da atualidade: CreditRisk +, KMV, CreditPortfolio View e CreditMetrics, e as melhorias resultantes dessa incorporação