10 resultados para model selection in binary regression

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O documento analisa como investidores de impacto selecionar suas companhias de portfólio na América Latina e que critérios são avaliados no processo. Uma vez que praticamente ne-nhuma pesquisa sobre isso foi con conduzidos até à data, e desde que o modelo de processo de seleção aplicados em capital de risco não é dissemelhantes, foi adotado essa abordagem. Os resultados revelam que os investidores de impacto originar e avaliar negócios de uma for-ma semelhante a capitalistas de risco , mas que alguns critérios são ajustados e outros adicio-nados a fim de refletir o duplo objectivo de investimento de impacto. Os investidores de im-pacto podem originar ofertas passivamente, mas eles preferem procurar empreendimentos sociais de forma proativa: contatos pessoais, o acesso a redes e eventos do setor são cruciais neste contexto. Impacto Investidores considerando um investimento em pesquisa para a Amé-rica Latina inteira, empreendedores sociais honestos e confiáveis comprometidos com impacto social; empreendimentos sociais elegíveis devem ser rentáveis com potencial de escalabilidade; o produto deve ter um impacto social, ou seja, criar valor para o consumidor individual e para a comunidade em geral; tamanho do mercado e crescimento do mercado são fatores externos cruciais; e as características de negócio dependem de atitude de risco do investidor e as perspectivas de uma saída bem sucedida, tanto em termos financeiros e sociais. Os investi-dores de impacto também estão dispostos a dar apoio não financeiro antes de um investimen-to, se um empreendimento social, mostra alto potencial para atingir o seu objectivo dual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We nd that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We find that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reinterprets results of Ohanissian et al (2003) to show the asymptotic equivalence of temporally aggregating series and using less bandwidth in estimating long memory by Geweke and Porter-Hudak’s (1983) estimator, provided that the same number of periodogram ordinates is used in both cases. This equivalence is in the sense that their joint distribution is asymptotically normal with common mean and variance and unity correlation. Furthermore, I prove that the same applies to the estimator of Robinson (1995). Monte Carlo simulations show that this asymptotic equivalence is a good approximation in finite samples. Moreover, a real example with the daily US Dollar/French Franc exchange rate series is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese é composta por três ensaios sobre o mercado de crédito e as instituições que regem bancarrota corporativa. No capítulo um, trazemos evidências que questionam a ideia de que maiores níveis de proteção ao credor sempre promovem desenvolvimento do mercado de crédito. Desde a publicação dos artigos seminais de La Porta et al (1997,1998), a métrica de proteção ao credor que os autores propuseram -- o índice de proteção ao credor -- tem sido amplamente utilizada na literatura de Law and Finance como variável explicativa em modelos de regressão linear em forma reduzida para determinar a correlação entre proteção ao credor e desenvolvimento do mercado de crédito. Neste artigo, exploramos alguns problemas com essa abordagem. Do ponto de vista teórico, essa abordagem geralmente supõe uma relação monotônica entre proteção ao credor e expansão do crédito. Nós apresentamos um modelo teórico para um mercado de crédito com seleção adversa em que um nível intermediário de proteção ao credor é capaz de implementar equilíbrios first best. Este resultado está de acordo com diversos outros artigos teóricos, tanto em equilíbrio geral quanto em equilíbrio parcial. Do ponto de vista empírico, tiramos proveito das reformas realizadas por alguns países durante as décadas de 1990 e 2000 para implementar uma estratégia inspirada na literatura de treatment effects e estimar o efeito sobre o valor de mercado e sobre a dívida de: i) permitir automatic stay a firmas em recuperação; e ii) conceder aos credores o direito de afastar os administradores. Os resultados que obtivemos apontam para um impacto positivo de automatic stay sobre todas as variáveis que dependem do valor de mercado da firma. Não encontramos efeito sobre dívida, e não encontramos efeitos significativos do direito de afastar administradores sobre valor de mercado ou dívida. O capítulo dois avalia as consequências empíricas de uma reforma na lei de falências sobre um mercado de crédito pouco desenvolvido. No início de 2005, o Congresso Nacional brasileiro aprovou uma nova lei de falências, a lei 11.101/05. Usando dados de firmas brasileiras e não-brasileiras, nós estimamos, usando dois modelos diferentes, o efeito da reforma falimentar sobre variáveis contratuais e não-contratuais de dívida. Ambos os modelos produzem resultados similares. Encontramos um aumento no volume total de dívida e na dívida de longo prazo, e uma redução no custo de dívida. Não encontramos efeitos significativos sobre a estrutura de propriedade da dívida. No capítulo três, desenvolvemos um modelo estimável de equilíbrio em search direcionado aplicado ao mercado de crédito, modelo este que pode ser usado para realizar avaliações ex ante de mudanças institucionais que afetem o crédito (como reformas em leis de falência). A literatura em economia há muito reconhece uma relação causal entre instituições (como leis e regulações) e desenvolvimento dos mercados financeiros. Essa conclusão qualitativa é amplamente reconhecida, mas há pouca evidência de sua importância quantitativa. Com o nosso modelo, é possível estimar como contratos de dívida mudam em resposta a mudanças nos parâmetros que descrevem as instituições da economia. Também é possível estimar o impacto sobre investimentos realizados pelas firmas, bem como caracterizar a distribuição do tamanho, idade e produtividade das firmas antes e depois da mudança institucional. Como ilustração, realizamos um exercício empírico em que usamos dados de firmas brasileiras para simular o impacto de variações na taxa de recuperação de créditos sobre os valores médios e totais de dívida e capital das firmas. Encontramos dívida crescente e capital quase sempre também crescente na taxa de recuperação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the commonly held belief that aggregate data display short-run comovement, there has been little discussion about the econometric consequences of this feature of the data. We use exhaustive Monte-Carlo simulations to investigate the importance of restrictions implied by common-cyclical features for estimates and forecasts based on vector autoregressive models. First, we show that the ìbestî empirical model developed without common cycle restrictions need not nest the ìbestî model developed with those restrictions. This is due to possible differences in the lag-lengths chosen by model selection criteria for the two alternative models. Second, we show that the costs of ignoring common cyclical features in vector autoregressive modelling can be high, both in terms of forecast accuracy and efficient estimation of variance decomposition coefficients. Third, we find that the Hannan-Quinn criterion performs best among model selection criteria in simultaneously selecting the lag-length and rank of vector autoregressions.