9 resultados para model order estimation
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
Resumo:
The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
This paper is a theoretica1 and empirica1 study of the re1ationship between indexing po1icy and feedback mechanisms in the inflationary adjustment process in Brazil. The focus of our study is on two policy issues: (1) did the Brazilian system of indexing of interest rates, the exchange rate, and wages make inflation so dependent on its own past values that it created a significant feedback process and inertia in the behaviour of inflation in and (2) was the feedback effect of past inf1ation upon itself so strong that dominated the effect of monetary/fiscal variables upon current inflation? This paper develops a simple model designed to capture several "stylized facts" of Brazi1ian indexing po1icy. Separate ru1es of "backward indexing" for interest rates, the exchange rate, and wages, reflecting the evolution of po1icy changes in Brazil, are incorporated in a two-sector model of industrial and agricultural prices. A transfer function derived irom this mode1 shows inflation depending on three factors: (1) past values of inflation, (2) monetary and fiscal variables, and (3) supply- .shock variables. The indexing rules for interest rates, the exchange rate, and wages place restrictions on the coefficients of the transfer function. Variations in the policy-determined parameters of the indexing rules imply changes in the coefficients of the transfer function for inflation. One implication of this model, in contrast to previous results derived in analytically simpler models of indexing, is that a higher degree of indexing does not make current inflation more responsive to current monetary shocks. The empirical section of this paper studies the central hypotheses of this model through estimation of the inflation transfer function with time-varying parameters. The results show a systematic non-random variation of the transfer function coefficients closely synchronized with changes in the observed values of the wage-indexing parameters. Non-parametric tests show the variation of the transfer function coefficients to be statistically significant at the time of the changes in wage indexing rules in Brazil. As the degree of indexing increased, the inflation feadback coefficients increased, while the effect of external price and agricultura shocs progressively increased and monetary effects progressively decreased.
Resumo:
Este trabalho analisa o setor brasileiro de celulose e tenta responder a duas questões principais: a abrangência do mercado relevante e a existência de poder de mercado das empresas que atuam neste setor. A dimensão produto do mercado relevante foi definida a partir de dados qualitativos. Devido à indisponibilidade de dados para uma análise qualitativa mais apurada, a opção foi pela celulose de fibra curta de eucalipto, produto mais importante do setor, tanto pela posição brasileira em tecnologia como pela pauta de exportações. Já quanto à dimensão geográfica, o procedimento realizado baseou-se em Forni (2004) que utiliza testes de raiz unitária para a definição do mercado. Concluiu-se que, com os dados disponíveis, o mercado deste produto pode ser considerado como internacional, não somente pelo resultado do teste como também pelo modo de funcionamento deste mercado. Definido o mercado de produto e geográfico, realizou-se um teste de poder de mercado, pois neste nicho, a Aracruz é líder mundial. Tal teste foi realizado com base na demanda residual descrita por Mayo, Kaserman e Kahai (1996) e estimado segundo Motta (2004). Concluiu-se que, apesar de a Aracruz possuir um elevado market share no setor, ela não possui poder de mercado.
Resumo:
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.