75 resultados para equilibrium asset pricing models with latent variables
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the period 1976-1992. We also test a conditional APT modeI by using the difference between the 3-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from individual securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be important for the appropriate pricing of the portfolios.
Resumo:
We study the asset pricing implications of an endowment economy when agents can default on contracts that would leave them otherwise worse off. We specialize and extend the environment studied by Kocherlakota (1995) and Kehoe and Levine (1993) to make it comparable to standard studies of asset pricillg. We completely charactize efficient allocations for several special cases. We illtroduce a competitive equilibrium with complete markets alld with elldogellous solvency constraints. These solvellcy constraints are such as to prevent default -at the cost of reduced risk sharing. We show a version of the classical welfare theorems for this equilibrium definition. We characterize the pricing kernel, alld compare it with the one for economies without participation constraints : interest rates are lower and risk premia can be bigger depending on the covariance of the idiosyncratic and aggregate shocks. Quantitative examples show that for reasonable parameter values the relevant marginal rates of substitution fali within the Hansen-Jagannathan bounds.
Resumo:
We show that for a large class of competitive nonlinear pricing games with adverse selection, the property of better-reply security is naturally satisfied - thus, resolving via a result due to Reny (1999) the issue of existence of Nash equilibrium for a large class of competitive nonlinear pricing games.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
: In a model of a nancial market with an atomless continuum of assets, we give a precise and rigorous meaning to the intuitive idea of a \well-diversi ed" portfolio and to a notion of \exact arbitrage". We show this notion to be necessary and su cient for an APT pricing formula to hold, to be strictly weaker than the more conventional notion of \asymptotic arbitrage", and to have novel implications for the continuity of the cost functional as well as for various versions of APT asset pricing. We further justify the idealized measure-theoretic setting in terms of a pricing formula based on \essential" risk, one of the three components of a tri-variate decomposition of an asset's rate of return, and based on a speci c index portfolio constructed from endogenously extracted factors and factor loadings. Our choice of factors is also shown to satisfy an optimality property that the rst m factors always provide the best approximation. We illustrate how the concepts and results translate to markets with a large but nite number of assets, and relate to previous work.
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.
Resumo:
After Modigliani and Miller (1958) presented their capital structure irrelevance proposition, analysis of corporate Önancing choices involving debt and equity instruments have generally followed two trends in the literature, where models either incorporate informational asymmetries or introduce tax beneÖts in order to explain optimal capital structure determination (Myers, 2002). None of these features is present in this paper, which develops an asset pricing model with the purpose of providing a positive theory of corporate capital structure by replicating main aspects of standard contractual practice observed in real markets. Alternatively, the imperfect market structure of the economy is tailored to match what is most common in corporate reality. Allowance for default on corporate debt with an associated penalty of seizure of Örmís future cash áows by creditors is introduced, for instance. In this context, a qualitative assessment of Önancial managersídecisions is carried out through numerical procedures.
Resumo:
Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.
Resumo:
Utiliza a técnica de simulação para estimar a "eficiência" de se testar o modelo Capital Asset Pricing Model (CAPM) num mercado com características do mercado acionário paulista, marcado por elevado retorno e alta volatilidade.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
The concept of stochastic discount factor pervades the Modern Theory of Asset Pricing. Initially, such object allows unattached pricing models to be discussed under the same terms. However, Hansen and Jagannathan have shown there is worthy information to be brought forth from such powerful concept which undelies asset pricing models. From security market data sets, one is able to explore the behavior of such random variable, determining a useful variance bound. Furthermore, through that instrument, they explore one pitfall on modern asset pricing: model misspecification. Those major contributions, alongside with some of its extensions, are thoroughly investigated in this exposition.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
Resumo:
This paper investigates whether there is evidence of structural change in the Brazilian term structure of interest rates. Multivariate cointegration techniques are used to verify this evidence. Two econometrics models are estimated. The rst one is a Vector Autoregressive Model with Error Correction Mechanism (VECM) with smooth transition in the deterministic coe¢ cients (Ripatti and Saikkonen [25]). The second one is a VECM with abrupt structural change formulated by Hansen [13]. Two datasets were analysed. The rst one contains a nominal interest rate with maturity up to three years. The second data set focuses on maturity up to one year. The rst data set focuses on a sample period from 1995 to 2010 and the second from 1998 to 2010. The frequency is monthly. The estimated models suggest the existence of structural change in the Brazilian term structure. It was possible to document the existence of multiple regimes using both techniques for both databases. The risk premium for di¤erent spreads varied considerably during the earliest period of both samples and seemed to converge to stable and lower values at the end of the sample period. Long-term risk premiums seemed to converge to inter-national standards, although the Brazilian term structure is still subject to liquidity problems for longer maturities.