31 resultados para convexity theorem
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.
Resumo:
Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.
Resumo:
Bellman's methods for dynamic optimization constitute the present mainstream in economics. However, some results associated with optimal controI can be particularly usefuI in certain problems. The purpose of this note is presenting such an example. The value function derived in Lucas' (2000) shopping-time economy in Infiation and Welfare need not be concave, leading this author to develop numerical analyses to determine if consumer utility is in fact maximized along the balanced path constructed from the first order conditions. We use Arrow's generalization of Mangasarian's results in optimal control theory and develop sufficient conditions for the problem. The analytical conclusions and the previous numerical results are compatible .
Resumo:
It is shown that, for almost every two-player game with imperfect monitoring, the conclusions of the classical folk theorem are false. So, even though these games admit a well-known approximate folk theorem, an exact folk theorem may only be obtained for a measure zero set of games. A complete characterization of the efficient equilibria of almost every such game is also given, along with an inefficiency result on the imperfect monitoring prisoner s dilemma.
Resumo:
The present article initiates a systematic study of the behavior of a strictly increasing, C2 , utility function u(a), seen as a function of agents' types, a, when the set of types, A, is a compact, convex subset of iRm . When A is a m-dimensional rectangle it shows that there is a diffeomorphism of A such that the function U = u o H is strictly increasing, C2 , and strictly convexo Moreover, when A is a strictly convex leveI set of a nowhere singular function, there exists a change of coordinates H such that B = H-1(A) is a strictly convex set and U = u o H : B ~ iR is a strictly convex function, as long as a characteristic number of u is smaller than a characteristic number of A. Therefore, a utility function can be assumed convex in agents' types without loss of generality in a wide variety of economic environments.
Resumo:
In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions.
Resumo:
This paper describes properties of upper semi-continuous homothetic preferences. First we give conditions for the existence of an upper semi-continuous representation which is homogeneous of degree one. Then we show that with the additional assumptions of monotonicity or strict convexity, the preference is continuous. Several counterexamples illustrate the tightness of the results.
Resumo:
On using McKenzie’s taxonomy of optimal accumulation in the longrun, we report a “uniform turnpike” theorem of the third kind in a model original to Robinson, Solow and Srinivasan (RSS), and further studied by Stiglitz. Our results are presented in the undiscounted, discrete-time setting emphasized in the recent work of Khan-Mitra, and they rely on the importance of strictly concave felicity functions, or alternatively, on the value of a “marginal rate of transformation”, ξσ, from one period to the next not being unity. Our results, despite their specificity, contribute to the methodology of intertemporal optimization theory, as developed in economics by Ramsey, von Neumann and their followers.
Resumo:
In this note, in an independent private values auction framework, I discuss the relationship between the set of types and the distribution of types. I show that any set of types, finite dimensional or not, can be extended to a larger set of types preserving incentive compatibility constraints, expected revenue and bidder’s expected utilities. Thus for example we may convexify a set of types making our model amenable to the large body of theory in economics and mathematics that relies on convexity assumptions. An interesting application of this extension procedure is to show that although revenue equivalence is not valid in general if the set of types is not convex these mechanism have underlying distinct allocation mechanism in the extension. Thus we recover in these situations the revenue equivalence.
Resumo:
This artic/e applies a theorem of Nash equilibrium under uncertainty (Dow & Werlang, 1994) to the classic Coumot model of oligopolistic competition. It shows, in particular, how one can map all Coumot equilibrium (which includes the monopoly and the null solutions) with only a function of uncertainty aversion coefficients of producers. The effect of variations in these parameters over the equilibrium quantities are studied, also assuming exogenous increases in the number of matching firms in the game. The Cournot solutions under uncertainty are compared with the monopolistic one. It shows principally that there is an uncertainty aversion level in the industry such that every aversion coefficient beyond it induces firms to produce an aggregate output smaller than the monopoly output. At the end of the artic/e equilibrium solutions are specialized for Linear Demand and for Coumot duopoly. Equilibrium analysis in the symmetric case allows to identify the uncertainty aversion coefficient for the whole industry as a proportional lack of information cost which would be conveyed by market price in the perfect competition case (Lerner Index).
Resumo:
This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.
Resumo:
We give necessary and sufficient conditions for the existence of symmetric equilibrium without ties in interdependent values auctions, with multidimensional independent types and no monotonic assumptions. In this case, non-monotonic equilibria might happen. When the necessary and sufficient conditions are not satisfied, there are ties with positive probability. In such case, we are still able to prove the existence of pure strategy equilibrium with an all-pay auction tie-breaking rule. As a direct implication of these results, we obtain a generalization of the Revenue Equivalence Theorem. From the robustness of equilibrium existence for all-pay auctions in multidimensional setting, an interpretation of our results can give a new justification to the use of tournaments in practice.
Resumo:
This paper explores the link between environmental policy and economic growth by employing an extension of the AK Growth Model. We include a state equation for renewable natural resources. We assume that the change in environmental regulations induces costs and that economic agents also derive some utility from capital stock accumulation vis-`a-vis the environment. Using the Hopf bifurcation theorem, we show that cyclical environmental policy strategies are optimal, providing theoretical support for the Environmental Kuznets Curve.
Resumo:
No presente paper, nós provamos que qualquer função da escolha social satisfaz o princípio da independência das alternativas irrelevantes (IIA) de Arrow se o comportamento individual é menu-dependente. Portanto, o 'Teorema da Possibilidade Geral' de Arrow não é válido quando as preferências individuais são determinadas por valores irredutíveis. Nesse contexto, qualquer instrumento de agregação que satisfaça os princípios não-ditatoriais e paretianos de unanimidade (maioria simples, por exemplo) também faz IIA. Esse poderia ser um resultado importante para a teoria da escolha social, enquanto um comportamento individual determinado por valores irredutíveis (interesse próprio, ideologia, Ética e normas sociais, por exemplo) podendo validar democracia representativa. A importância relativa de tais valores e da possibilidade de reversão da preferência determina a dinâmica da escolha social, de acordo com os princípios democráticos.