16 resultados para Volatility models
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
The aim of this paper is to test whether or not there was evidence of contagion across the various financial crises that assailed some countries in the 1990s. Data on sovereign debt bonds for Brazil, Mexico, Russia and Argentina were used to implement the test. The contagion hypothesis is tested using multivariate volatility models. If there is any evidence of structural break in volatility that can be linked to financial crises, the contagion hypothesis will be confirmed. Results suggest that there is evidence in favor of the contagion hypothesis.
Resumo:
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
Asset allocation decisions and value at risk calculations rely strongly on volatility estimates. Volatility measures such as rolling window, EWMA, GARCH and stochastic volatility are used in practice. GARCH and EWMA type models that incorporate the dynamic structure of volatility and are capable of forecasting future behavior of risk should perform better than constant, rolling window volatility models. For the same asset the model that is the ‘best’ according to some criterion can change from period to period. We use the reality check test∗ to verify if one model out-performs others over a class of re-sampled time-series data. The test is based on re-sampling the data using stationary bootstrapping. For each re-sample we check the ‘best’ model according to two criteria and analyze the distribution of the performance statistics. We compare constant volatility, EWMA and GARCH models using a quadratic utility function and a risk management measurement as comparison criteria. No model consistently out-performs the benchmark.
Resumo:
We compare three frequently used volatility modelling techniques: GARCH, Markovian switching and cumulative daily volatility models. Our primary goal is to highlight a practical and systematic way to measure the relative effectiveness of these techniques. Evaluation comprises the analysis of the validity of the statistical requirements of the various models and their performance in simple options hedging strategies. The latter puts them to test in a "real life" application. Though there was not much difference between the three techniques, a tendency in favour of the cumulative daily volatility estimates, based on tick data, seems dear. As the improvement is not very big, the message for the practitioner - out of the restricted evidence of our experiment - is that he will probably not be losing much if working with the Markovian switching method. This highlights that, in terms of volatility estimation, no clear winner exists among the more sophisticated techniques.
Resumo:
This article investigates the existence of contagion between countries on the basis of an analysis of returns for stock indices over the period 1994-2003. The economic methodology used is that of multivariate GARCH family volatility models, particularly the DCC models in the form proposed by Engle and Sheppard (2001). The returns were duly corrected for a series of country-specific fundamentals. The relevance of this procedure is highlighted in the literature by the work of Pesaran and Pick (2003). The results obtained in this paper provide evidence favourable to the hypothesis of regional contagion in both Latin America and Asia. As a rule, contagion spread from the Asian crisis to Latin America but not in the opposite direction
Resumo:
O objetivo do presente trabalho é analisar as características empíricas de uma série de retornos de dados em alta freqüência para um dos ativos mais negociados na Bolsa de Valores de São Paulo. Estamos interessados em modelar a volatilidade condicional destes retornos, testando em particular a presença de memória longa, entre outros fenômenos que caracterizam este tipo de dados. Nossa investigação revela que além da memória longa, existe forte sazonalidade intradiária, mas não encontramos evidências de um fato estilizado de retornos de ações, o efeito alavancagem. Utilizamos modelos capazes de captar a memória longa na variância condicional dos retornos dessazonalizados, com resultados superiores a modelos tradicionais de memória curta, com implicações importantes para precificação de opções e de risco de mercado
Resumo:
Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.
Resumo:
Nas últimas décadas, a análise dos padrões de propagação internacional de eventos financeiros se tornou o tema de grande parte dos estudos acadêmicos focados em modelos de volatilidade multivariados. Diante deste contexto, objetivo central do presente estudo é avaliar o fenômeno de contágio financeiro entre retornos de índices de Bolsas de Valores de diferentes países a partir de uma abordagem econométrica, apresentada originalmente em Pelletier (2006), sobre a denominação de Regime Switching Dynamic Correlation (RSDC). Tal metodologia envolve a combinação do Modelo de Correlação Condicional Constante (CCC) proposto por Bollerslev (1990) com o Modelo de Mudança de Regime de Markov sugerido por Hamilton e Susmel (1994). Foi feita uma modificação no modelo original RSDC, a introdução do modelo GJR-GARCH formulado em Glosten, Jagannathan e Runkle (1993), na equação das variâncias condicionais individuais das séries para permitir capturar os efeitos assimétricos na volatilidade. A base de dados foi construída com as séries diárias de fechamento dos índices das Bolsas de Valores dos Estados Unidos (SP500), Reino Unido (FTSE100), Brasil (IBOVESPA) e Coréia do Sul (KOSPI) para o período de 02/01/2003 até 20/09/2012. Ao longo do trabalho a metodologia utilizada foi confrontada com outras mais difundidos na literatura, e o modelo RSDC com dois regimes foi definido como o mais apropriado para a amostra selecionada. O conjunto de resultados encontrados fornecem evidências a favor da existência de contágio financeiro entre os mercados dos quatro países considerando a definição de contágio financeiro do Banco Mundial denominada de “muito restritiva”. Tal conclusão deve ser avaliada com cautela considerando a extensa diversidade de definições de contágio existentes na literatura.
Resumo:
Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.
Resumo:
In the first chapter, we test some stochastic volatility models using options on the S&P 500 index. First, we demonstrate the presence of a short time-scale, on the order of days, and a long time-scale, on the order of months, in the S&P 500 volatility process using the empirical structure function, or variogram. This result is consistent with findings of previous studies. The main contribution of our paper is to estimate the two time-scales in the volatility process simultaneously by using nonlinear weighted least-squares technique. To test the statistical significance of the rates of mean-reversion, we bootstrap pairs of residuals using the circular block bootstrap of Politis and Romano (1992). We choose the block-length according to the automatic procedure of Politis and White (2004). After that, we calculate a first-order correction to the Black-Scholes prices using three different first-order corrections: (i) a fast time scale correction; (ii) a slow time scale correction; and (iii) a multiscale (fast and slow) correction. To test the ability of our model to price options, we simulate options prices using five different specifications for the rates or mean-reversion. We did not find any evidence that these asymptotic models perform better, in terms of RMSE, than the Black-Scholes model. In the second chapter, we use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month.
Resumo:
The goal of this paper is to present a comprehensive emprical analysis of the return and conditional variance of four Brazilian …nancial series using models of the ARCH class. Selected models are then compared regarding forecasting accuracy and goodness-of-…t statistics. To help understanding the empirical results, a self-contained theoretical discussion of ARCH models is also presented in such a way that it is useful for the applied researcher. Empirical results show that although all series share ARCH and are leptokurtic relative to the Normal, the return on the US$ has clearly regime switching and no asymmetry for the variance, the return on COCOA has no asymmetry, while the returns on the CBOND and TELEBRAS have clear signs of asymmetry favoring the leverage e¤ect. Regarding forecasting, the best model overall was the EGARCH(1; 1) in its Gaussian version. Regarding goodness-of-…t statistics, the SWARCH model did well, followed closely by the Student-t GARCH(1; 1)
Resumo:
This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.
Resumo:
The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment