12 resultados para VaR Estimation methods, Statistical Methods, Risk managment, Investments
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.
Resumo:
O objetivo deste trabalho é caracterizar a Curva de Juros Mensal para o Brasil através de três fatores, comparando dois tipos de métodos de estimação: Através da Representação em Espaço de Estado é possível estimá-lo por dois Métodos: Filtro de Kalman e Mínimos Quadrados em Dois Passos. Os fatores têm sua dinâmica representada por um Modelo Autorregressivo Vetorial, VAR(1), e para o segundo método de estimação, atribui-se uma estrutura para a Variância Condicional. Para a comparação dos métodos empregados, propõe-se uma forma alternativa de compará-los: através de Processos de Markov que possam modelar conjuntamente o Fator de Inclinação da Curva de Juros, obtido pelos métodos empregados neste trabalho, e uma váriavel proxy para Desempenho Econômico, fornecendo alguma medida de previsão para os Ciclos Econômicos.
Resumo:
Esta dissertação avalia o impacto da educação sobre a renda dos jovens no Brasil, seguindo a tradição de equações de determinação de salários. O trabalho difere dos trabalhos na área realizados no Brasil em quatro aspectos. Em primeiro lugar, Em primeiro lugar, o universo de análise está focado na população jovem brasileira, a qual ingressou recentemente no mercado de trabalho e nele permanecerá por muitos anos, o que traz informações sobre as características desse mercado para os próximos 25 a 35 anos. Além disso, ele difere porque introduz a qualidade do ensino como determinante dos rendimentos. Depois, porque adota um protocolo de imputação da qualidade da educação dos jovens para os quais não se tem informação sobre a qualidade da educação, de sorte a evitar viés de seleção. E, por fim, a dissertação contrasta com os estudos correntes no tema porque explora diferentes métodos de estimação dos retornos da educação e da qualidade do ensino. Além do método tradicional dos estimadores de OLS, este trabalho considera o uso de fronteiras estocásticas de salários. As estimativas foram feitas a partir de um modelo cross-section em dois estágios. No primeiro estágio, estimou-se a equação de determinação da probabilidade de um jovem entre 11 e 21 anos de idade estudar na rede pública ou na rede privada, escolas com diferenças qualitativas grandes no país. No segundo estágio, imputou-se um indicador de qualidade da educação dos jovens num modelo econométrico de determinação da renda dos jovens entre 16 e 25 anos de idade. O procedimento com imputação foi necessário simplesmente pelo fato de nas estatísticas brasileiras não haver informações sobre a qualidade do ensino adquirido pelos indivíduos. A análise permitiu mostrar que a qualidade da educação interfere de forma significativa na renda dos jovens, com grande impacto sobre os índices de desigualdade da distribuição de renda nessa faixa de idade. Também permitiu mostrar que existe um trade-off entre o retorno da e
Resumo:
Este trabalho tem por objetivo discutir detalhadamente o desenvolvimento de métodos de estimação de parâmetros de demanda e oferta em mercados de produtos diferenciados. As técnicas apresentadas consideram explicitamente a endogeneidade dos preços e podem ser aplicadas a diferentes tipos de indústrias. O sistema de demandas de mercado é derivado a partir de modelos de escolha discreta descrevendo o comportamento do consumidor. Esse sistema é então combinado com hipóteses sobre as funções custo e sobre o comportamento de determinação dos preços por parte das firmas para gerar preços e quantidades de equilíbrio. Os parâmetros a ser estimados são os que determinam os custos marginais das firmas e a distribuição dos gostos dos consumidores. Essa distribuição determina elasticidades e estas, combinadas com o custo marginal e com uma hipótese de equilíbrio de Nash na determinação de preços, determinam preços de equilíbrio. Essas elasticidades e parâmetros de custo desempenham um papel central em análises de questões descritivas e de mudanças no ambiente do mercado sob análise.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
Data available on continuos-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the use of Martingale Estimating Functions and the application of Generalized Method of Moments (GMM).
Resumo:
Data available on continuous-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the employment of Martingale Estimating Functions, and the application of Generalized Method of Moments (GMM).
Resumo:
This paper considers the general problem of Feasible Generalized Least Squares Instrumental Variables (FG LS IV) estimation using optimal instruments. First we summarize the sufficient conditions for the FG LS IV estimator to be asymptotic ally equivalent to an optimal G LS IV estimator. Then we specialize to stationary dynamic systems with stationary VAR errors, and use the sufficient conditions to derive new moment conditions for these models. These moment conditions produce useful IVs from the lagged endogenous variables, despite the correlation between errors and endogenous variables. This use of the information contained in the lagged endogenous variables expands the class of IV estimators under consideration and there by potentially improves both asymptotic and small-sample efficiency of the optimal IV estimator in the class. Some Monte Carlo experiments compare the new methods with those of Hatanaka [1976]. For the DG P used in the Monte Carlo experiments, asymptotic efficiency is strictly improved by the new IVs, and experimental small-sample efficiency is improved as well.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
Há mais de uma década, o Value-at-Risk (VaR) é utilizado por instituições financeiras e corporações não financeiras para controlar o risco de mercado de carteiras de investimentos. O fato dos métodos paramétricos assumirem a hipótese de normalidade da distribuição de retornos dos fatores de risco de mercado, leva alguns gestores de risco a utilizar métodos por simulação histórica para calcular o VaR das carteiras. A principal crítica à simulação histórica tradicional é, no entanto, dar o mesmo peso na distribuição à todos os retornos encontrados no período. Este trabalho testa o modelo de simulação histórica com atualização de volatilidade proposto por Hull e White (1998) com dados do mercado brasileiro de ações e compara seu desempenho com o modelo tradicional. Os resultados mostraram um desempenho superior do modelo de Hull e White na previsão de perdas para as carteiras e na sua velocidade de adaptação à períodos de ruptura da volatilidade do mercado.
Resumo:
This paper estimates the impact of the use of structured methods on the quality of education of the students in primary public school in Brazil. Structure methods encompass a range of pedagogical and managerial instruments applied to the education system. In recent years, several municipalities in the State of São Paulo have contracted out private educational providers to implement these structured methods in their schooling system. Their pedagogical proposal involves structuring curriculum contents, elaboration and use of teachers and students textbooks, and training and supervision of the teachers and instructors. Using a difference in differences estimation strategy, we find that the fourth and eighth grader students in the municipalities with structured methods performed better in Portuguese and Math than students in municipalities not exposed to the methods. We find no differences in approval rates. However, a robustness check is not able to discard the possibility that unobserved municipal characteristics may affect the results.
Resumo:
O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.