17 resultados para Stochastic ODEs
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the serial-correlation ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns, does not depend on any parametric function representing preferences, is suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles, and can be a basis to construct an estimator of the risk-free rate. For post-war data, our estimator is close to unity most of the time, yielding an average annual real discount rate of 2.46%. In formal testing, we cannot reject standard preference speciÖcations used in the literature and estimates of the relative risk-aversion coe¢ cient are between 1 and 2, and statistically equal to unity. Using our SDF estimator, we found little signs of the equity-premium puzzle for the U.S.
Resumo:
Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.
Resumo:
This Paper Tackles the Problem of Aggregate Tfp Measurement Using Stochastic Frontier Analysis (Sfa). Data From Penn World Table 6.1 are Used to Estimate a World Production Frontier For a Sample of 75 Countries Over a Long Period (1950-2000) Taking Advantage of the Model Offered By Battese and Coelli (1992). We Also Apply the Decomposition of Tfp Suggested By Bauer (1990) and Kumbhakar (2000) to a Smaller Sample of 36 Countries Over the Period 1970-2000 in Order to Evaluate the Effects of Changes in Efficiency (Technical and Allocative), Scale Effects and Technical Change. This Allows Us to Analyze the Role of Productivity and Its Components in Economic Growth of Developed and Developing Nations in Addition to the Importance of Factor Accumulation. Although not Much Explored in the Study of Economic Growth, Frontier Techniques Seem to Be of Particular Interest For That Purpose Since the Separation of Efficiency Effects and Technical Change Has a Direct Interpretation in Terms of the Catch-Up Debate. The Estimated Technical Efficiency Scores Reveal the Efficiency of Nations in the Production of Non Tradable Goods Since the Gdp Series Used is Ppp-Adjusted. We Also Provide a Second Set of Efficiency Scores Corrected in Order to Reveal Efficiency in the Production of Tradable Goods and Rank Them. When Compared to the Rankings of Productivity Indexes Offered By Non-Frontier Studies of Hall and Jones (1996) and Islam (1995) Our Ranking Shows a Somewhat More Intuitive Order of Countries. Rankings of the Technical Change and Scale Effects Components of Tfp Change are Also Very Intuitive. We Also Show That Productivity is Responsible For Virtually All the Differences of Performance Between Developed and Developing Countries in Terms of Rates of Growth of Income Per Worker. More Important, We Find That Changes in Allocative Efficiency Play a Crucial Role in Explaining Differences in the Productivity of Developed and Developing Nations, Even Larger Than the One Played By the Technology Gap
Resumo:
This paper builds a simple, empirically-verifiable rational expectations model for term structure of nominal interest rates analysis. It solves an stochastic growth model with investment costs and sticky inflation, susceptible to the intervention of the monetary authority following a policy rule. The model predicts several patterns of the term structure which are in accordance to observed empirical facts: (i) pro-cyclical pattern of the level of nominal interest rates; (ii) countercyclical pattern of the term spread; (iii) pro-cyclical pattern of the curvature of the yield curve; (iv) lower predictability of the slope of the middle of the term structure; and (v) negative correlation of changes in real rates and expected inflation at short horizons.
Resumo:
This paper develops nonparametric tests of independence between two stationary stochastic processes. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, I take advantage of a generalized entropic measure so as to build a class of nonparametric tests of independence. Asymptotic normality and local power are derived using the functional delta method for kernels, whereas finite sample properties are investigated through Monte Carlo simulations.
Resumo:
This paper considers the general problem of Feasible Generalized Least Squares Instrumental Variables (FG LS IV) estimation using optimal instruments. First we summarize the sufficient conditions for the FG LS IV estimator to be asymptotic ally equivalent to an optimal G LS IV estimator. Then we specialize to stationary dynamic systems with stationary VAR errors, and use the sufficient conditions to derive new moment conditions for these models. These moment conditions produce useful IVs from the lagged endogenous variables, despite the correlation between errors and endogenous variables. This use of the information contained in the lagged endogenous variables expands the class of IV estimators under consideration and there by potentially improves both asymptotic and small-sample efficiency of the optimal IV estimator in the class. Some Monte Carlo experiments compare the new methods with those of Hatanaka [1976]. For the DG P used in the Monte Carlo experiments, asymptotic efficiency is strictly improved by the new IVs, and experimental small-sample efficiency is improved as well.
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.
Resumo:
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.
Resumo:
Trabalho apresentado no 37th Conference on Stochastic Processes and their Applications - July 28 - August 01, 2014 -Universidad de Buenos Aires
Resumo:
Trabalho apresentado no International Conference on Scientific Computation And Differential Equations 2015
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.