9 resultados para Linear coregionalization model
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
A disseminação do formato mp3 como padrão para arquivos de música, aliada ao crescimento da Internet, fez surgir uma poderosa rede de distribuição de música online. A extrema disponibilidade, diversidade de escolha e facilidade de acesso para quem possui banda larga em seus computadores fez crescer o download de músicas pela Internet, revolucionando o mundo fonográfico. O objetivo geral deste estudo é identificar quais fatores, na perspectiva do consumidor, têm maior influência no download gratuito de música pela Internet através de uma pesquisa exploratória de duas fases. Na primeira fase, qualitativa, foram realizadas entrevistas não estruturadas com usuários e consumidores de redes peer-to-peer de download de música pela Internet e entrevista semi-estruturada com um ex-executivo da indústria fonográfica. Na fase seguinte, quantitativa, foram aplicados questionários estruturados a pessoas que efetuam download de música pela Internet. Adotou-se a regressão linear múltipla como modelo para interpretar os dados colhidos junto à amostra e testar as hipóteses relacionadas as variáveis: acessibilidade ao produto, percepção de injustiça no preço e faixa etária. Os resultados sugerem a não rejeição das três hipóteses estudadas.
Resumo:
In this paper we construct common-factor portfolios using a novel linear transformation of standard factor models extracted from large data sets of asset returns. The simple transformation proposed here keeps the basic properties of the usual factor transformations, although some new interesting properties are further attached to them. Some theoretical advantages are shown to be present. Also, their practical importance is confirmed in two applications: the performance of common-factor portfolios are shown to be superior to that of asset returns and factors commonly employed in the finance literature.
Resumo:
A tese apresenta três ensaios empíricos sobre os padrões decisórios de magistrados no Brasil, elaborados à partir de bases de dados inéditas e de larga escala, que contém detalhes de dezenas de milhares de processos judiciais na primeira e na segunda instância. As bases de dados são coletadas pelo próprio autor através de programas-robô de coleta em massa de informações, aplicados aos "links" de acompanhamento processual de tribunais estaduais no Brasil (Paraná, Minas Gerais e Santa Catarina). O primeiro artigo avalia - com base em modelo estatístico - a importância de fatores extra-legais sobre os resultados de ações judiciais, na Justiça Estadual do Paraná. Isto é, se os juízes favorecem sistematicamente a parte hipossuficiente (beneficiária de Assistência Judiciária Gratuita). No segundo artigo, estuda-se a relação entre a duração de ações cíveis no primeiro grau e a probabilidade de reforma da sentença, utilizando-se dados da Justiça Estadual de Minas Gerais. O objetivo é avaliar se existe um dilema entre a duração e a qualidade das sentenças. Dito de outra forma, se existe um dilema entre a observância do direito ao devido processo legal e a celeridade processual. O último artigo teste a hipótese - no âmbito de apelações criminais e incidentes recursais no Tribunal de Justiça de Santa Catarina - de que as origens profissionais dos desembargadores influenciam seus padrões decisórios. Isto é, testa-se a hipótese de que desembargadores/relatores oriundos da carreira da advocacia são mais "garantistas" ( e desembargadores oriundos da carreira do Ministério Público são menos "garantistas") relativamente aos seus pares oriundos da carreira da magistratura. Testam-se as hipóteses com base em um modelo estatístico que explica a probabilidade de uma decisão recursal favorável ao réu, em função da origem de carreira do relator do recurso, além de um conjunto de características do processo e do órgão julgador.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.
Resumo:
A escolha da cidade do Rio de Janeiro como sede de grandes eventos esportivos mundiais, a Copa do Mundo de Futebol de 2014 e os Jogos Olímpicos de 2016, colocou-a no centro de investimentos em infraestrutura, mobilidade urbana e segurança pública, com consequente impacto no mercado imobiliário, tanto de novos lançamentos de empreendimentos, quanto na revenda de imóveis usados. Acredita-se que o preço de um imóvel dependa de uma relação entre suas características estruturais como quantidade de quartos, suítes, vagas de garagem, presença de varanda, tal como sua localização, proximidade com centros de trabalho, entretenimento e áreas valorizadas ou degradadas. Uma das técnicas para avaliar a contribuição dessas características para a formação do preço do imóvel, conhecido na Econométrica como Modelagem Hedônica de Preços, é uma aplicação de regressão linear multivariada onde a variável dependente é o preço e as variáveis independentes, as respectivas características que deseja-se modelar. A utilização da regressão linear implica em observar premissas que devem ser atendidas para a confiabilidade dos resultados a serem analisados, tais como independência e homoscedasticidade dos resíduos e não colinearidade entre as variáveis independentes. O presente trabalho objetiva aplicar a modelagem hedônica de preços para imóveis localizados na cidade do Rio de Janeiro em um modelo de regressão linear multivariada, em conjunto com outras fontes de dados para a construção de variáveis de acessibilidade e socioambiental a fim de verificar a relação de importância entre elas para a formação do preço e, em particular, exploramos brevemente a tendência de preços em função da distância a favelas. Em atenção aos pré-requisitos observados para a aplicação de regressão linear, verificamos que a premissa de independência dos preços não pode ser atestada devido a constatação da autocorrelação espacial entre os imóveis, onde não apenas as características estruturais e de acessibilidade são levadas em consideração para a precificação do bem, mas principalmente a influência mútua que os imóveis vizinhos exercem um ao outro.
Resumo:
This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.