4 resultados para Knowledge discovery in databases

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sociedades pós-modernas caracterizam-se pela transição de economias baseadas em ativos tangíveis para economias de conhecimento, onde indivíduos vivenciam uma imprescindível conectividade, mas ao mesmo tempo, experimentam um enfraquecimento das estruturas sociais, que tem generado uma crescente necessidade de se criar bases cognitivas e afetivas para a vida (Rheingold, 1992; Wasko & Farah, 2005; Arvidsson, 2008). Nesse cenário se desenvolve o fenômeno das redes sociais virtuais, agregando milhões de pessoas que compartilham mensagens de texto, imagens e vídeos todos os dias (Nielsen, 2012) fazendo com que organizações privadas foquem cada vez mais seus investimentos para acompanhar as novas tendências (McWilliam, 2000; Reichheld & Schefter, 2000; Yoo, Suh & Lee, 2002; Arvidsson, 2008). Consequentemente, uma das mais importantes questões que vem ganhando importância no meio academico e entre profissionais da área é justamente: por que as pessoas compartilham conhecimento online? (Monge, Fulk, Kalman, Flanigan, Parnassa & Rumsey, 1998; Lin, 2001) Por meio de uma metodologia de estudo de caso conduzida no Brasil e na França, este estudo objetiva produzir uma relevante revisão teórica acerca do tema, trazendo novas idéias de diferentes contextos, e propondo um modelo para avaliar as principais motivações que conduzem indivíduos a compartilhar conhecimento em redes sociais virtuais. Essas razões foram estruturadas em cinco dimensões: capital estrutural, cognitivo e relacional, motivações pessoais e razões monetárias (Nahapiet & Ghoshal, 1998; Wasko & Faraj, 2005; Chiu et al, 2006). As evidências sugerem que o processo de participar e compartilhar conhecimento em redes sociais virtuais é resultado de uma complexa combinação de motivações de orientação pessoal e coletiva, que parecem variar pouco de acordo com os diferentes objetivos e contextos dessas comunidades, onde as razões financeiras parecem ser secundárias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the standard price discovery analysis to estimate the information share of dual-class shares across domestic and foreign markets. By examining both common and preferred shares, we aim to extract information not only about the fundamental value of the rm, but also about the dual-class premium. In particular, our interest lies on the price discovery mechanism regulating the prices of common and preferred shares in the BM&FBovespa as well as the prices of their ADR counterparts in the NYSE and in the Arca platform. However, in the presence of contemporaneous correlation between the innovations, the standard information share measure depends heavily on the ordering we attribute to prices in the system. To remain agnostic about which are the leading share class and market, one could for instance compute some weighted average information share across all possible orderings. This is extremely inconvenient given that we are dealing with 2 share prices in Brazil, 4 share prices in the US, plus the exchange rate (and hence over 5,000 permutations!). We thus develop a novel methodology to carry out price discovery analyses that does not impose any ex-ante assumption about which share class or trading platform conveys more information about shocks in the fundamental price. As such, our procedure yields a single measure of information share, which is invariant to the ordering of the variables in the system. Simulations of a simple market microstructure model show that our information share estimator works pretty well in practice. We then employ transactions data to study price discovery in two dual-class Brazilian stocks and their ADRs. We uncover two interesting ndings. First, the foreign market is at least as informative as the home market. Second, shocks in the dual-class premium entail a permanent e ect in normal times, but transitory in periods of nancial distress. We argue that the latter is consistent with the expropriation of preferred shareholders as a class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho minera as informações coletadas no processo de vestibular entre 2009 e 2012 para o curso de graduação de administração de empresas da FGV-EAESP, para estimar classificadores capazes de calcular a probabilidade de um novo aluno ter bom desempenho. O processo de KDD (Knowledge Discovery in Database) desenvolvido por Fayyad et al. (1996a) é a base da metodologia adotada e os classificadores serão estimados utilizando duas ferramentas matemáticas. A primeira é a regressão logística, muito usada por instituições financeiras para avaliar se um cliente será capaz de honrar com seus pagamentos e a segunda é a rede Bayesiana, proveniente do campo de inteligência artificial. Este estudo mostre que os dois modelos possuem o mesmo poder discriminatório, gerando resultados semelhantes. Além disso, as informações que influenciam a probabilidade de o aluno ter bom desempenho são a sua idade no ano de ingresso, a quantidade de vezes que ele prestou vestibular da FGV/EAESP antes de ser aprovado, a região do Brasil de onde é proveniente e as notas das provas de matemática fase 01 e fase 02, inglês, ciências humanas e redação. Aparentemente o grau de formação dos pais e o grau de decisão do aluno em estudar na FGV/EAESP não influenciam nessa probabilidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at evaluating how effective is knowledge disclosure in attenuating institutional negative reactions caused by uncertainties brought by firms’ new strategies that respond to novel technologies. The empirical setting is from an era of technological ferment, the period of the introduction of the voice over internet protocol (VoIP) in the USA in the early 2000’s. This technology led to the convergence of the wireline telecommu- nications and cable television industries. The Institutional Brokers’ Estimate System (also known as the I/B/E/S system) was used to capture reactions of securities analysts, a revealed important source of institutional pressure on firms’ strategies. For assessing knowledge disclosure, a coding technique and a established content analysis framework were used to quantitatively measure the non-numerical and unstructured data of transcripts of business events occurred at that time. Eventually, several binary response models were tested in order to assess the effect of knowledge disclosure on the probability of institutional positive reactions. The findings are that the odds of favorable institutional reactions increase when a specific kind of knowledge is disclosed. It can be concluded that knowledge disclosure can be considered as a weapon in technological changes situations, attenuating adverse institutional reactions to the companies’ strategies in environments of technological changes.