2 resultados para Jump linear quadratic (JLQ) control

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an affine jump diffusion (AJD) model with the jump-risk premium being determined by both idiosyncratic and systematic sources of risk. While we maintain the classical affine setting of the model, we add a finite set of new state variables that affect the paths of the primitive, under both the actual and the risk-neutral measure, by being related to the primitive's jump process. Those new variables are assumed to be commom to all the primitives. We present simulations to ensure that the model generates the volatility smile and compute the "discounted conditional characteristic function'' transform that permits the pricing of a wide range of derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.